Skip to main content
Log in

Molecular characterization of quinolinate phosphoribosyltransferase (QPRTase) in Nicotiana

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Quinolate acid phosphoribosyltransferase (QPRTase), a key enzyme in nicotinamide adenine dinucleotide (NAD) biosynthesis, also plays an important role in ensuring nicotinic acid is available for the synthesis of defensive pyridine alkaloids in Nicotiana species. In this study, cDNAs for QPRTase were characterized from N. rustica and N. tabacum. Deduced proteins from both cDNAs are almost identical and contain a 24 amino acid N-terminal extension, not reported in other QPRTases, that has characteristics of a mitochondrial targeting sequence. In N. tabacum and N. sylvestris, both of which contain nicotine as the major pyridine alkaloid, QPRTase transcript was detected in roots, the site of nicotine synthesis, but not in leaves. QPRTase transcript levels increased markedly in roots of both species 12–24 h after damage to aerial tissues, with a concomitant rise in transcript levels of putrescine N-methyltransferase (PMT), another key enzyme in nicotine biosynthesis. In N. glauca, however, in which anabasine represents the major pyridine alkaloid, QPRTase transcript was detected in both leaf and root tissues. Moreover, wound induction of QPRTase but not PMT was observed in leaf tissues, and not in roots, 12–24 h after wounding. Southern analysis of genomic DNA from the Nicotiana species noted above, and also several others from within the genus, suggested that QPRTase is encoded by a small gene family in all the species investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Baldwin, I.T. 1988. Damage induced alkaloids in tobacco: pot bound plants are not inducible. J. Chem. Ecol. 14: 1113–1120.

    Google Scholar 

  • Baldwin, I.T. and Ohnmeiss T.E. 1993. Alkaloid responses to damage in Nicotiana native to North America. J. Chem. Ecol. 19: 1143–1153.

    Google Scholar 

  • Baldwin, I.T. and Preston, C.A. 1999. The eco-physiological complexity of plant responses to insect herbivores. Planta 208: 137–145.

    Google Scholar 

  • Baldwin, I.T. and Schmelz, E.A. 1994. Constraints on an induced defense: the role of leaf area. Oecologia 97: 424–430.

    Google Scholar 

  • Baldwin, I.T., Schmelz, E.A. and Ohnmeiss, T.E. 1994. Woundinduced changes in root and shoot jasmonic acid pools correlate with induced nicotine synthesis in Nicotiana sylvestris Spegazzini and Comes. J. Chem. Ecol. 20: 2139–2157.

    Google Scholar 

  • Baldwin, I.T., Zhang, Z.-P., Diab, N., Ohnmeiss, T.E., McCloud, E.S., Lynds, G.Y. and Schmelz, E.A. 1997. Quantifications, correlations and manipulations of wound-induced changes in jasmonic acid and nicotine in Nicotiana sylvestris. Planta 201: 397–407.

    Google Scholar 

  • Bhatia, R. and Calvo, K.C. 1995. The sequencing, expression, purification, and steady-state kinetic analysis of quinolinate phosphoribosyl transferease from Escherichia coli. Arch. Biochem. Biophys. 2: 270–278.

    Google Scholar 

  • Castorena, J.L., Garriott, J.C., Barnhardt, F.E. and Shaw, R.F. 1987. A fatal poisoning from Nicotiana glauca. Clin. Toxicol. 25: 429–435.

    Google Scholar 

  • Chaplin, J.F. 1975. Registration of LAFC53 tobacco germplasm (Reg. #GP13). Crop Sci. 15: 282.

    Google Scholar 

  • Chaplin, J. F. 1986. Registration of MAFC 5 tobacco germplasm. Crop Sci. 6: 214.

    Google Scholar 

  • Chang, H.-K. and Zylstra, G.J. 1999. Role of quinolinate phosphoribosyl transferase in degradation of phthalate by Burkholderia cepacia DBO1. J. Bact. 181: 3069–3075.

    PubMed  Google Scholar 

  • Cherep, N.N. and Kormanitskii, I.K. 1991. Mitochondrial Nicotiana genome [Russian]. Biopol. i lekta 7: 45–50.

    Google Scholar 

  • Chung, C.T. and Miller, R.H. 1988. A rapid and convenient method for the preparation and storage of competent bacterial cells. Nucl. Acids Res. 16: 3580.

    PubMed  Google Scholar 

  • Dawson, R.F. 1941. The localization of the nicotine synthetic mechanism in the tobacco plant. Science 94: 396–397.

    Google Scholar 

  • Dawson, R.F. 1942. Accumulation of nicotine in reciprocal grafts of tomato and tobacco. Am. J. Bot. 29: 66–71.

    Google Scholar 

  • Dawson, R.F. 1945. An experimental analysis of alkaloid production in Nicotiana: the origin of nornicotine. Am. J. Bot. 32: 416–423.

    Google Scholar 

  • Dawson, R.F. 1962. Biosynthesis of the Nicotiana alkaloids. In: W.R. Brode (Ed.) Science in Progress, vol. 12, Yale University Press, New Haven, CT, pp. 117–143.

    Google Scholar 

  • Eads, J.C., Ozturk, D., Wexler, T.B., Grubmeyer, C. and Sacchettini, J.C. 1997. A new function for a common fold: the crystal structure of quinolinic acid phosphoribosyltransferase. Structure 15: 47–58.

    Google Scholar 

  • Fecker, L.F., Ruegenhagen, C. and Berlin, J. 1993. Increased production of cadaverine and anabasine in hairy root cultures of Nicotiana tabacum expressing a bacterial lysine decarboxylase gene. Plant Mol. Biol. 23: 11–21.

    PubMed  Google Scholar 

  • Feth, F., Wagner, R. and Wagner, K.G. 1986. Regulation in tobacco callus of enzyme activities of the nicotine pathway. 1. The route ornithine to methylpyrroline. Planta 168: 402–407.

    Google Scholar 

  • Fukuoka, S.-I., Nyaruhucha, C.M. and Shibata, K. 1998. Characterization and functional expression of the cDNA encoding human brain quinolinate phosphoribosyltransferase. Biochim. Biophys. Acta 1395: 192–201.

    PubMed  Google Scholar 

  • Gallie, D.R. 1996. Translational control of cellular and viral mRNAs. Plant Mol. Biol. 32: 145–158.

    PubMed  Google Scholar 

  • Goodspeed, T.H. and Thompson, M.C. 1959. Cytotaxonomy of Nicotiana. II. Bot. Rev. 25: 385–415.

    Google Scholar 

  • Hamill J.D., Parr, A.J., Robins R.J. and Rhodes, M.J.C. 1986. Secondary product formation by cultures of Beta vulgaris and Nicotiana rustica transformed with Agrobacterium rhizogenes. Plant Cell Rep. 5: 111–114.

    Google Scholar 

  • Hamill, J.D. and Lidgett, A. 1997. Hairy root cultures: opportunities and key protocols for studies in metabolic engineering. In: P.M. Doran (Ed.) Hairy Roots: Culture and Applications, Harwood Academic Publishers, Amsterdam, pp. 1–29.

    Google Scholar 

  • Hashimoto, T. and Yamada, Y. 1994. Alkaloid biogenesis: molecular aspects. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45: 257–285.

    Google Scholar 

  • Hashimoto, T., Shoji, T., Mihara, T., Oguri, H., Tamaki, K., Suzuki, K.-I. and Yamada, Y. 1998a. Intraspecific variability of the tandem repeats in Nicotiana putrescine N-methyltransferases. Plant Mol. Biol. 37: 25–37.

    PubMed  Google Scholar 

  • Hashimoto, T., Tamaki, K., Suzuki, K.-I. and Yamada, Y. 1998b. Molecular cloning of plant spermidine synthases. Plant Cell Physiol. 39: 73–79.

    PubMed  Google Scholar 

  • Herminghaus, S., Tholl, D., Ruegenhagen, C., Fecker, L.F., Leuschner, C. and Berlin, J. 1996. Improved metabolic action of a bacterial lysine decarboxylase gene in tobacco hairy root cultures by its fusion to a rbcS transit peptide coding sequence. Transgenic Res. 5: 193–201.

    PubMed  Google Scholar 

  • Hibi, N., Fujita, T., Hatano, M., Hashimoto, T. and Yamada, Y. 1992. Putrescine N-methyltransferase in cultured roots of Hyoscyamus albus. Plant Physiol. 100: 826–835.

    Google Scholar 

  • Hibi, N., Higashiguchi, S., Hashimoto, T. and Yamada, Y. 1994. Gene expression in tobacco low-nicotine mutants. Plant Cell 6: 723–735.

    PubMed  Google Scholar 

  • Hughes, K.T., Dessen, A., Gray, J.P. and Grubmeyer, C. 1993. The Salmonella typhimurium nadC gene: sequence determination by use of Mud-P22 and purification of quinolinate phosphoribosyltransferase. J. Bact. 175: 479–486.

    PubMed  Google Scholar 

  • Imanishi, S., Hashizume, K., Nakita, M., Kojima, H., Matsubayashi, Y., Hashimoto, T., Yamada, Y. and Nakamura, K. 1998. Differential induction by methyl jasmonate of genes encoding ornithine decarboxylase and other enzymes involved in nicotine biosynthesis in tobacco cell cultures. Plant Mol. Biol. 38: 1101–1111.

    Article  PubMed  Google Scholar 

  • Jamet, E., Durr, A. and Fleck, J. 1987. Absence of some truncated genes in the amphidiploid Nicotiana tabacum. Gene 59: 213–221.

    PubMed  Google Scholar 

  • Jinks, J.L., Caligari, P.D.S. and Ingram, N.R. 1981. Gene transfer in Nicotiana rustica using irradiated pollen. Nature 291: 586–588.

    Google Scholar 

  • Joshi, C.P., Zhou, H., Huang, X. and Chiang, V. 1997. Context sequences of translation initiation codon in plants. Plant Mol. Biol. 35: 993–1001.

    PubMed  Google Scholar 

  • Karban, R. and Baldwin, I.T. 1997. Induced Responses to Herbivory. University of Chicago Press, Chicago.

    Google Scholar 

  • Kozak, M. 1986. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryote ribosomes. Cell 44: 283–292.

    Article  PubMed  Google Scholar 

  • Kozac, M. 1995. Adherance to the first-AUG rule when a second AUG codon follows closely upon the first. Proc. Natl. Acad. Sci. USA 92: 2662–2666.

    PubMed  Google Scholar 

  • Kutchan, T.M. 1995. Alkaloid biosynthesis: the basis for metabolic engineering of medicinal plants. Plant Cell 7: 1059–1070.

    PubMed  Google Scholar 

  • Leete, E. 1979. The alkaloids: alkaloids derived from ornithine, lysine and nicotinic acid. In: E.A. Bell and B.V. Charlwood (Eds.) Encyclopedia of Plant Physiology, New Series, vol. 8, Secondary Plant Products, Springer-Verlag, Berlin, pp. 65–91.

    Google Scholar 

  • Legg, P.D. and Collins, G.B. 1971. Inheritance of percent total alkaloids in Nicotiana tabacum L. II. Genetic effects of two loci in Burley 21 × LA Burley 21 population. Can. J. Genet. Cytol. 13: 287–291.

    Google Scholar 

  • Lidgett, A.J., Moran, M., Wong, K.A.L., Furze, J., Rhodes, M.J.C. and Hamill, J.D. 1995. Isolation and expression pattern of a cDNA encoding a cathepsin B-like protease from Nicotiana rustica. Plant Mol. Biol. 29: 379–384.

    PubMed  Google Scholar 

  • Lin, X., Kaul, S., Rounsley, S., Shea, T.P., Benito, M.-I., Town, C.D., Fujil, C.Y., Mason, T., Bowman, C.L., Barnstead, M., Feldblum, T.V., Buell, C.R., Ketchum, K.A., Lee, J., Ronning, C.M., Koo, H.L., Moffat, K.S., Cronin, L.A., Shen, M., Pai, G., van Aken, S., Umayam, L., Tallon, L.J., Gill, J.E., Adams, M.D., Carrera, A.J., Creasy, T.H., Goodman, H.M., Somerville, C.R., Copenhaver, G.P., Preuss, D., Nierman, W.C., White, O., Eisen, J.A., Salzburg, S.L., Fraser, C.M. and Venter, J.C. 1999. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature 402: 761–768.

    PubMed  Google Scholar 

  • Mason, J. 1990. Commercial Hydroponics. Kangaroo Press, Kenthurst, Australia.

    Google Scholar 

  • Mellick, L.B., Makowski, T., Mellick, G.A. and Borger, R. 1999. Neuromuscular blockade after ingestion of tree tobacco (Nicotiana glauca). Ann. Emerg. Med. 34: 101–104

    PubMed  Google Scholar 

  • Mizusaki, S., Tanebe, Y., Noguchi, M. and Tamaki, E. 1973. Changes in the activities of ornithine decarboxylase, putrescine N-methyltransferase and N-methylputrescine oxidase in tobacco roots in relation to nicotine biosynthesis. Plant Cell Physiol. 14: 103–110.

    Google Scholar 

  • Nakai, K. and Kanehisa, M. 1992. A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics 14: 897–911. (http://psort.nibb.ac.jp:8800.)

    Google Scholar 

  • Ohnmeiss, T.E., McCloud, E.S., Lynds, G.Y. and Baldwin, I.T. 1997. Within plant relationships among wounding, jasmonic acid, and nicotine: implications for defence in Nicotiana sylvestris. New Phytol. 137: 441–452.

    Google Scholar 

  • Parr, A.J. and Hamill, J.D. 1987. Relationship between Agrobacterium rhizogenes transformed hairy roots and intact, uninfected Nicotiana plants. Phytochemistry 26: 3241–3245.

    Google Scholar 

  • Pedersen, A.G. and Nielsen, H. 1997. Neural network prediction of translation initiation sites in eukaryotes: perspectives for EST and genome analysis. Proceedings 5th International Conference on Intelligent Systems in Molecular Biology (ISMB97). (http://www.cbs.dtu.dk/services/Netstart)

  • Riechers, D.E. and Timko, M.P. 1999. Structure and expression of the gene family encoding putrescine N-methyltransferase in Nicotiana tabacum: new clues to the evolutionary origin of cultivated tobacco. Plant Mol. Biol. 41: 387–401.

    PubMed  Google Scholar 

  • Rothnie, H. M. 1996. Plant mRNA 3'-end formation. Plant Mol. Biol. 32: 43–61.

    PubMed  Google Scholar 

  • Sambrook, J., Fritsch, E.F. and Maniatis T. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Plainview, NY.

    Google Scholar 

  • Saunders, J.W. and Bush, L.P. 1979. Nicotine biosynthetic enzyme activities in Nicotiana tabacum L. genotypes with different alkaloid levels. Plant Physiol. 64: 236–240.

    Google Scholar 

  • Saitoh, F., Noma, M. and Kawashima, N. 1985 The alkaloid contents of sixty Nicotiana species. Phytochemistry 24: 477–480.

    Google Scholar 

  • Sharma, V., Grubmeyer, C. and Sacchettini, J.C. 1998. Crystal structure of quinolinic acid phosphoribosyltransferase from Mycobacterium tuberculosis: a potential drug target. Structure 6: 1587–1599.

    PubMed  Google Scholar 

  • Sisson, V.A. and Severson, R.F. 1990. Alkaloid composition of the Nicotiana species. Beitr. Tabakforsch. Int. 14: 327–339.

    Google Scholar 

  • Sjoeling, S. and Glaser, E. 1998. Mitochondrial targeting peptides in plants. Trends Plant Sci. 3: 136–140.

    Google Scholar 

  • Soltis, P.S. and Soltis, D.E. 1995. The dynamic nature of polyploid genomes. Proc. Natl. Acad. Sci. USA. 92: 8089–8091.

    PubMed  Google Scholar 

  • Song, K., Lu, P., Tang, K. and Osborn, P.C. 1995. Rapid genome change in synthetic polyploids of Brassica and its implications for polylpoid evolution. Proc. Natl. Acad. Sci. USA. 92: 7719–7723.

    PubMed  Google Scholar 

  • Suzuki, K.-i., Yamada, Y. and Hashimoto T. 1999. Expression of Atropa belladonna putrescine N-methyltransferase gene in root pericycle. Plant Cell Physiol. 40: 289–297.

    PubMed  Google Scholar 

  • Volkov, R.A., Borisjuk, N.V., Panchuk, I.I., Schweizer, D. and Hemleben, V. 1999. Elimination and rearrangement of parental rDNA in the allotetraploid Nicotiana tabacum. Mol. Biol. Evol. 16: 311–320.

    PubMed  Google Scholar 

  • Wagner, R. and Wagner, K.G. 1985. The pyridine-nucleotide cycle in tobacco: enzyme activities for the de novo synthesis of NAD. Planta 165: 532–537.

    Google Scholar 

  • Wagner, R., Feth, F. and Wagner, K.G. 1986a. Regulation in tobacco callus of enzyme activities of the nicotine pathway. II. The pyridine-nucleotide cycle. Planta 168: 408–413

    Google Scholar 

  • Wagner, R., Feth, F. and Wagner, K. G. 1986b. The regulation of enzyme activities of the nicotine pathway in tobacco. Physiol. Plant. 68: 667–672.

    Google Scholar 

  • Wagner, R., Feth, F. and Wagner, K. G. 1986c. The pyridine nucleotide cycle in tobacco. Enzyme activities for the recycling of NAD. Planta 167: 226–232

    Google Scholar 

  • Walton, N.J. and Belshaw, N.J. 1988. The effect of cadaverine on the formation of anabasine from lysine in hairy root cultures of Nicotiana hesperis. Plant Cell Rep. 7: 115–118.

    Google Scholar 

  • Walton, N.J., Robins, R.J. and Rhodes, M.J.C. 1988. Perturbation of alkaloid production by cadaverine in hairy root cultures of Nicotiana rustica. Plant Sci. 54: 125–131.

    Google Scholar 

  • Wink, M. 1988. Plant breeding: importance of plant secondary metabolites for protection against pathogens and herbivores. Theor. Appl. Genet. 75: 225–233.

    Google Scholar 

  • Wink, M. 1997. Special nitrogen metabolism. In: P.M. Dey and J.B. Harborne (Eds.) Plant Biochemistry, Academic Press, San Diego, CA.

    Google Scholar 

  • Yates, R.A. and Pardee, A.R. 1956. Pyrimidine biosynthesis in Escherichia coli. J. Biol. Chem. 221: 743–756.

    PubMed  Google Scholar 

  • Zhang, Z.-P. and Baldwin, I.T. 1997. Transport of [2-14C] jasmonic acid from leaves to roots mimics wound-induced changes in endogenous jasmonic acid pools in Nicotiana sylvestris. Planta 203: 436–441.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinclair, S.J., Murphy, K.J., Birch, C.D. et al. Molecular characterization of quinolinate phosphoribosyltransferase (QPRTase) in Nicotiana. Plant Mol Biol 44, 603–617 (2000). https://doi.org/10.1023/A:1026590521318

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026590521318

Navigation