Skip to main content
Log in

Membrane Phospholipid Alterations In Alzheimer's Disease: Deficiency of Ethanolamine Plasmalogens

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The ethanolamine plasmalogens are decreased whereas serine glycerophospholipids are significantly increased in plasma membrane phospholipid in affected regions of brain in Alzheimer's disease. This may be due to stimulation of Ca2+-independent plasmalogen-selective phospholipase A2, which was recently discovered in brain. This phospholipase A2 differs from other Ca2+-independent phospholipases A2 in response to ATP and various inhibitors. It may be responsible for excess release of arachidonic acid and accumulation of prostaglandins and lipid peroxides in AD. Accumulation of the above lipid metabolites due to abnormal receptor function and signal transduction may contribute to neurodegeneration in AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Selkoe, D. J. 1991. The molecular pathology of Alzheimer's disease. Neuron 6:487–498.

    Google Scholar 

  2. Arispe, N., Pollard, H. B., and Rojas, E. 1994. β-amyloid Ca2+-channel hypothesis for neuronal death in Alzheimer's Disease. Mol. Cell. Biochem. 140:119–125.

    Google Scholar 

  3. Katzman, R., and Saitoh, T. 1991. Advances in Alzheimer's disease. FASEB J. 5:278–286.

    Google Scholar 

  4. Farooqui, A. A., Wells, K., and Horrocks, L. A. 1995. Breakdown of membrane phospholipids in Alzheimer's disease: involvement of excitatory amino acid receptors. Molec. Chem. Neuropathol. 25, 155–173.

    Google Scholar 

  5. McGeer, P. L., Rogers, J., and McGeer, E. G. 1994. Neuroimmune mechanisms in Alzheimer's disease pathogenesis. Alzheimer Disease and Associated Disorders 8:149–158.

    Google Scholar 

  6. Ginsberg, L., Atack, J. R., Rapoport, S. I., and Gershfeld, N. L. 1993. Evidence for a membrane lipid defect in Alzheimer's disease. Mol. Chem. Neuropathol. 19:37–46.

    Google Scholar 

  7. Roth, G. S., Joseph, J. A., Mason, R. P. 1995. Membrane alterations in Alzheimer's disease and aging—Reply. Trends. Neurosci. 18:484.

    Google Scholar 

  8. Ying, W. 1996. Deleterious network hypothesis of alzheimer's disease. Med. Hypoth. 46:421–428.

    Google Scholar 

  9. Farooqui, A. A., Liss, L., and Horrocks, L. A. 1988. Neurochemical aspects of Alzheimer's disease: Involvement of membrane phospholipids. Metabolic Brain Dis. 3:19–35.

    Google Scholar 

  10. Nitsch, R., Pittas, A., Blusztajn, J. K., Slack, B. E., Growdon, J. H., and Wurtman, R. J. 1991. Alterations of phospholipid metabolites in postmortem brain from patients with Alzheimer's disease. Ann. NY Acad. Sci. 640:110–113.

    Google Scholar 

  11. Nitsch, R. M., Blusztajn, J. K., Pittas, A. G., Slack, B. E., Growdon, J. H., and Wurtman, R. J. 1992. Evidence for a membrane defect in Alzheimer's disease brain. Proc. Natl. Acad. Sci. USA 89:1671–1675.

    Google Scholar 

  12. Söderberg, M., Edlund, C., Kristensson, K., and Dallner, G. 1990. Lipid compositions of different regions of the human brain during aging. J. Neurochem. 54:415–423.

    Google Scholar 

  13. Horrocks, L. A., and Fu, S. C. 1978. Pathway for hydrolysis of plasmalogens in brain. Adv. Exp. Med. Biol. 101:397–406.

    Google Scholar 

  14. Stokes, C. E., and Hawthorne, J. N. 1987. Reduced phosphoinositide concentration in anterior temporal cortex of Alzheimer's diseased brains. J. Neurochem. 48:1018–1021.

    Google Scholar 

  15. Farooqui, A. A., Liss, L., and Horrocks, L. A. 1990. Elevated activities of lipases and lysophospholipases in Alzheimer's disease. Dementia 1:208–214.

    Google Scholar 

  16. Pettegrew, J. W., Moossy, J., Withers, G., McKeag, D., and Panchalingam, K. 1988. 31P Nuclear magnetic resonance study of the brain in Alzheimer's disease. J. Neuropathol. Exp. Neurol. 47:235–248.

    Google Scholar 

  17. Pettegrew, J. W. 1989. Molecular insights into Alzheimer's disease. Ann. NY Acad. Sci. 568:5–28.

    Google Scholar 

  18. Iwamoto, N., Kobayashi, K., and Kosaka, K. 1989. The formation of prostaglandins in the postmortem cerebral cortex of Alzheimer-type dementia patients. J. Neurol. 236:80–84.

    Google Scholar 

  19. Jeandel, C., Nicolas, M. B., Dubois, F., Nabet-Belleville, F., Penin, F., and Cuny, G. 1989. Lipid peroxidation and free radical scavengers in Alzheimer's disease. Gerontology 35:275–282.

    Google Scholar 

  20. Subbarao, K. V., Richardson, J. S., and Ang, L. C. 1990. Autopsy samples of Alzheimer's cortex show increased peroxidation in vitro. J. Neurochem. 55:342–345.

    Google Scholar 

  21. Volicer, L., and Crino, P. B. 1990. Involvement of free radicals in dementia of the Alzheimer type: A hypothesis. Neurobiol. Aging 11:567–571.

    Google Scholar 

  22. Pettegrew, J. W., Klunk, W. E., Kanal, E., Panchalingam, K., and McClure, R. J. 1995. Changes in brain membrane phospholipid and high-energy phosphate metabolism precede dementia. Neurobiol. Aging 16:973–975.

    Google Scholar 

  23. Horrocks, L. A., Spanner, S., Mozzi, R., Fu, S. C., D'Amato, R. A., and Krakowka, S. 1978. Plasmalogenase is elevated in early demyelinating lesions. Adv. Exp. Med. Biol. 100:423–438.

    Google Scholar 

  24. Nakayama, R., and Saito, K. 1989. Presence of 1–0-alk-1'-enyl–2–0-acetyl-glycerophosphocholine (vinyl form of PAF) in perfused rat and guinea pig hearts. J. Biochem. 105:494–496.

    Google Scholar 

  25. Chao, W., and Olson, M. S. 1993. Platelet-activating factor: receptors and signal transduction. Biochem. J. 292:617–629.

    Google Scholar 

  26. Zoeller, R. A., Morand, O. H., and Raetz, C. R. H. 1988. A possible role for plasmalogens in protecting animal cells against photosensitized killing. J. Biol. Chem. 263:11590–11596.

    Google Scholar 

  27. Glaser, P. E., and Gross, R. W. (1994) Plasmenylethanolamine facilitates rapid membrane fusion: A stopped-flow kinetic investigation correlating the propensity of a major plasma membrane constituent to adopt an HII phase with its ability to promote membrane fusion. Biochemistry 33:5805–5812.

    Google Scholar 

  28. Wells, K., Farooqui, A. A., Liss, L. and Horrocks, L. A. (1995) Neural membrane phospholipids in Alzheimer's disease. Neurochem. Res. 20, 1329–1333.

    Google Scholar 

  29. Ginsberg, L., Rafique, S., Xuereb, J. H., Rapoport, S. I., and Gershfeld, N. L. 1995. Disease and anatomic specificity of ethanolamine plasmalogen deficiency in Alzheimer's disease brain. Brain Res. 698:223–226.

    Google Scholar 

  30. Hirashima, Y., Farooqui, A. A., Mills, J. S., and Horrocks, L. A. 1992. Identification and purification of calcium-independent phospholipase A2 from bovine brain cytosol. J. Neurochem. 59:708–714.

    Google Scholar 

  31. Yang, H.-C., Farooqui, A. A., and Horrocks, L. A. 1994. Effects of glycosaminoglycans and glycosphingolipids on cytosolic phospholipases A2 from bovine brain. Biochem. J. 299:91–95.

    Google Scholar 

  32. Farooqui, A. A., Yang, H.-C. and Horrocks, L. A. 1995. Plasmalogens, phospholipases A2, and signal transduction. Brain Res. Rev. 21, 152–161.

    Google Scholar 

  33. Yang, H.-C., Farooqui, A. A. and Horrocks, L. A. 1994. Effects of sialic acid and sialoglycoconjugates on cytosolic phospholipases A2 from bovine brain. Biochem. Biophys. Res. Commun. 199, 1158–1166.

    Google Scholar 

  34. Yang, H.-C., Farooqui, A. A. and Horrocks, L. A. 1996. Purification and characterization of Ca2+-independent plasmalogen selective phospholipase A2 FASEB J. 10, A986.

    Google Scholar 

  35. Hazen, S. L., and Gross, R. W. 1991. ATP-dependent regulation of rabbit myocardial cytosolic calcium-independent phospholipase A2. J. Biol. Chem. 266:14526–14534.

    Google Scholar 

  36. Hazen, S. L., and Gross, R. W. 1991. Human myocardial cytosolic Ca2+-independent phospholipase A2 is modulated by ATP. Concordant ATP-induced alterations in enzyme kinetics and mechanism-based inhibition. Biochem. J. 280:581–587.

    Google Scholar 

  37. Ackermann, E. J., Kempner, E. S., and Dennis, E. A. 1994. Ca2+-independent cytosolic phospholipase A2 from macrophage-like P388D1 cells. Isolation and characterization. J. Biol. Chem. 269:9227–9233.

    Google Scholar 

  38. Farooqui, A. A., Hirashima, Y., and Horrocks, L. A. 1992. Brain phospholipases and their role in signal transduction, in Neurobiology of Essential Fatty Acids (Bazan, N. G., Toffano, G., and Murphy, M. eds), pp. 11–25. Plenum Press, New York.

    Google Scholar 

  39. Stephenson, D. T., Lemere, C. A., Seldoe, D. J., and Clemens, J. A. 1996. Cytosolic phospholipase A2 (cPLA2) immunoreactivity is elevated in Alzheimer's disease brain. Neurobol. Dis. 3, 51–63.

    Google Scholar 

  40. Halliwell, B. 1994. Free radicals and antioxidants: a personal view. Nutr. Rev. 52, 253–265.

    Google Scholar 

  41. Jenner, P. 1994. Oxidative damage in neurodegenerative disease. Lancet 344, 796–798.

    Google Scholar 

  42. Chen, L., Richardson, J. S., Caldwell, J. E., and Ang, L. C. 1994. Regional brain activity of free radical defense enzymes in autopsy samples from patients with Alzheimer's disease and from non-demented controls. Int. J. Neurosci. 75, 83–90.

    Google Scholar 

  43. Masliah, E., Mallory, M., Hansen, L., DeTeresa, R., and Terry, R. D. 1993. Quantitative synaptic alterations in the human neocortex during normal aging. Neurology 43:192–197.

    Google Scholar 

  44. Farooqui, A. A., and Horrocks, L. A. 1994. Involvement of glutamate receptors, lipases, and phospholipases in long-term potentiation and neurodegeneration. J. Neurosci. Res. 38:6–11.

    Google Scholar 

  45. Novelli, A., Reilly, J. A., Lysko, P. G., and Henneberry, R. C. 1988. Glutamate becomes neurotoxic via the N-methyl-D-aspartate receptor when intracellular energy levels are reduced. Brain Res. 451:205–212.

    Google Scholar 

  46. Hazen, S. L., Stuppy, R. J., and Gross, R. W. 1990. Purification and characterization of canine myocardial cytosolic phospholipase A2. J. Biol. Chem. 265:10622–10630.

    Google Scholar 

  47. Ackermann, E. J. and Dennis, E. A. 1995. Mammalian calcium-independent phospholipase A2. Biochim. Biophys. Acta Lipids Lipid Metab. 1259, 125–136.

    Google Scholar 

  48. Clark, J. D., Milona, N., and Knopf, J. L. 1990. Purification of a 110-kilodalton cytosolic phospholipase A2 from the human monocytic cell line U937. Proc. Natl. Acad. Sci. USA 87:7708–7712.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farooqui, A.A., Rapoport, S.I. & Horrocks, L.A. Membrane Phospholipid Alterations In Alzheimer's Disease: Deficiency of Ethanolamine Plasmalogens. Neurochem Res 22, 523–527 (1997). https://doi.org/10.1023/A:1027380331807

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1027380331807

Navigation