Skip to main content
Log in

Chronic inflammation, apoptosis and (pre-)malignant lesions in the gastro-intestinal tract

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Inflammatory conditions are characterized by activation of the transcription factor nuclear factor kappa B (NF-κB), resulting in the expression of NF-κB-regulated, inflammation-related genes, such as inducible nitric oxide synthase (iNOS) and cyclo-oxygenase-2 (COX-2). Expression of these genes contributes to the survival of cells. Indeed, exposure to pro-inflammatory cytokines in the absence of NF-κB activation leads to apoptosis.1,2 Chronic inflammatory conditions are accompanied by constitutive activation of NF-κB and hence, to the continuous expression of pro-survival genes, as has been observed in chronic gastritis.3 Although beneficial for the survival of cells during exposure to inflammatory stress, the continuous activation of NF-κB may also pose a risk: cells with a pro-survival phenotype may give rise to continuously proliferating cells and may thus be tumorigenic. Progression to a malignant phenotype of these cells will most likely involve additional changes in the expression of non-NF-κB regulated genes e.g. a shift in the balance of pro- and anti-apoptotic genes towards a more anti-apoptotic phenotype. Literature on inflammation-related genes and the apoptotic balance in pre-malignant and malignant conditions in the gastro-intestinal tract is still scarce and conflicting. In this review, we aim to give an overview of the existing literature and we will focus on inflammation- and apoptosis-related genes in the sequence of normal epithelium-inflamed epithelium-metaplasia-dysplasia-cancer in the gastrointestinal tract, in particular esophagus (Barrett's esophagus: BE), stomach (gastritis) and colon (inflammatory bowel disease: IBD).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Schoemaker MH, Ros JE, Homan M, et al. Cytokine regulation of pro-and anti-apoptotic genes in rat hepatocytes: NFkappaB-regulated inhibitor of apoptosis protein 2 (cIAP2) prevents apoptosis. J Hepatol 2002; 36: 742-750.

    Google Scholar 

  2. Van Antwerp DJ, Martin SJ, Kafri T, Green DR, Verma IM. Suppression of TNF-alpha-induced apoptosis by NF-kappaB. Science 1996; 274: 787-789.

    Google Scholar 

  3. Van den Brink GR, ten Kate FJ, Ponsioen CY, et al. Expression and activation of NF-?B inthe antrum of the human stomach. J Immunol 2000; 164: 3353-3359.

    Google Scholar 

  4. Michel T, Xie QW, Nathan C. Molecular biological analysis of nitric oxide synthases. In: Feelisch M and Stamler JS, eds. Methods in Nitric Oxide Research. UK: John Wiley and Sons, 1995: 161-175.

    Google Scholar 

  5. Palmer RMJ, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987; 327: 524-526.

    Google Scholar 

  6. Kobzik L, Reid MB, Bredt DS, Stamler JS. Nitric oxide in skeletal muscle. Nature 1994; 372: 546-548.

    Google Scholar 

  7. Kilbourn RG, Belloni P. Endothelial cell production of nitrogen oxides in response to interferon gamma in combination with tumour necrosis factor, interleukin-1 or endotoxin. J Natl Cancer Inst 1990; 82: 772-776.

    Google Scholar 

  8. Farrell AJ, Blake DR. Nitric oxide. Ann Rheum Dis 1996; 55: 7-20.

    Google Scholar 

  9. Vane JR, Mitchell JA, Appleton I, et al. Inducible isoforms of cyclooxygenase and nitric-oxide synthase in inflammation. Proc Natl Acad Sci 1994; 91: 2046-2050.

    Google Scholar 

  10. Kim PKM, Zamora R, Petrosko P, Billiar TR. The regulatory role of nitric oxide in apoptosis. Int Immunopharmacol 2001; 1: 1421-1441.

    Google Scholar 

  11. Jaiswal M, LaRusso NF, Gores GJ. Nitric oxide in gastrointestinal epithelial cell carcinogenesis: Linking inflammation to oncogenesis. Am J Physiol 2001; 281: G626-G634.

    Google Scholar 

  12. Jouzeau JY, Terlain B, Abid A, et al. Cyclo-oxygenase isoenzymes. Drugs 1997; 53(4): 564-582.

    Google Scholar 

  13. Frölich JC. A classification of NSAIDs according to the relative inhibition of cyclooxygenase isoenzymes. TiPS 1997; 18: 30-34.

    Google Scholar 

  14. Eberhart CE, Coffey RJ, Radhika A, Giardiello FM, Ferrenbach S, DuBois RN. Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology 1994; 107: 1183-1188.

    Google Scholar 

  15. Ristimäki A, Honkanen N, Jänkälä H, Sipponen P, Häarkönen M. Expression of cyclooxygenase-2 in human gastric carcinoma. Cancer Res 1997; 57: 1276-1280.

    Google Scholar 

  16. Steinbach G, Lynch PM, Phillips RK, et al. The effect of celecoxib, a cyclooxygenase inhibitor, in familial adenomatous polyposis. N Engl J Med 2000; 29: 2946-2952.

    Google Scholar 

  17. Reed JC. Mechanisms of apoptosis. Am J Pathol 2000; 157: 1415-1430.

    Google Scholar 

  18. Van Gurp M, Festjens N, van Loo G, Saelens X, Vandenabeele P. Mitochondrial intermembrane proteins in cell death. Biochem Biophys Res Comm 2003; 304: 487-497.

    Google Scholar 

  19. Gross A, McDonnell JM, Korsmeyer SJ. Bcl-2 family members and the mitochondria in apoptosis. Genes Development 1999; 13: 1899-1911.

    Google Scholar 

  20. Watanabe J, Kushihata F, Honda K, Mominoki K, Matsuda S, Kobayashi N. Bcl-xl overexpression in hepatocellular carcinoma. Int J Oncol 2002; 21: 515-519.

    Google Scholar 

  21. Montserrat E. Chronic lymphoproliferative disorders. Curr Opin Oncol 1997; 9: 34-41.

    Google Scholar 

  22. Levine DS, Haggit RC, Irvine S, et al. Natural history of highgrade dysplasia in Barrett's esophagus. Gastroenterology 1996; 110: A550.

    Google Scholar 

  23. Hameeteman W, Tytgat GNJ, Houthoff HJ, van den Tweel JG. Barrett's oesophagus: Development of dysplasia and adenocarcinoma. Gastroenterolgy 1989; 96: 1249-1256.

    Google Scholar 

  24. Champion G, Richter JE, Vaezi MF. Duodenogastroesophageal reflux: Relationship to pH and importance in Barrett's esophagus. Gastroenterology 1994; 107: 747-754.

    Google Scholar 

  25. Wilson KT, Fu S, Ramanujam KS, Meltzer SJ. Increased expression of inducible nitric oxide synthase and cyclooxygenase-2 in Barrett's Esophagus and associated adenocarcinomas. Cancer Res 1998; 58: 2929-2934.

    Google Scholar 

  26. Goldstein SR, Yang GY, Chen X, Curtis SK, Yang CS. Studies of iron deposits, inducible nitric oxide synthase and nitrotyrosine in a rat model for esophageal adenocarcinoma. Carcinogenesis 1998; 19: 1445-1449.

    Google Scholar 

  27. Forrester K, Ambs S, Lupold SE, et al. Nitric oxide-induced p53 accumulation and regulation of inducible nitric oxide synthase expression by wild-type p53. Proc Natl Acad Sci USA 1996; 93: 2442-2447.

    Google Scholar 

  28. Souza RF, Shewmake K, Beer DG, Cryer B, Spechler SJ. Selective inhibition of cyclooxygenase-2 suppresses growth and induces apoptosis in human esophageal adenocarcinoma cells. Cancer Res 2000; 60: 5767-5772.

    Google Scholar 

  29. Shirvani VN, Ouatu-Lascar R, Kaur BS, Omary MB, Triadafilopoulos G. Cyclooxygenase 2 expression in Barrett's esophagus and adenocarcinoma: Ex vivo induction by bile salts and acid exposure. Gastroenterology 2000; 118(3): 487-496.

    Google Scholar 

  30. Morris CD, Armstrong GR, Bigley G, Green H, Attwood SEA. Cyclooxygenase-2 expression in the Barrett's metaplasiadysplasia-adenocarcinoma sequence. Am J Gastroenterol 2001; 96: 990-996.

    Google Scholar 

  31. Buttar NJ, Wang KK, Leontovich O, et al. Chemoprevention of esophageal adenocarcinoma by COX-2 inhibitors in an animal model of Barrett's Esophagus. Gastroenterology 2002; 122: 1101-1112.

    Google Scholar 

  32. Tsibouris P, Hendricksce MT, Zissis M, Isaacs PE. NSAIDs do not protect patients with Barrett Oesophagus from adenocarcinoma development. Gastroenterology 2001; 120: A3022.

    Google Scholar 

  33. Garewal HS, Ramsey L, Sampliner RE, Payne C, Bernstein H, Bernstein C. Post-ablation biomarker abnormalities in Barrett's Esophagus (BE): Are we increasing the cancer risk? Gastroenterology 2001; 120: A79.

    Google Scholar 

  34. Halm U, Tannapfel A, Breitung B, Breidert M, Wittemkind CW, Moss. Apoptosis and cell proliferation in the metaplasiadysplasia-carcinoma-sequence of Barrett's esophagus. Hepatogastroenterology 2000; 47: 962-966.

    Google Scholar 

  35. Katada N, Hindler RA, Smyrk TC, et al. Apoptosis is inhibited early in the dysplasia-carcinoma sequence of Barrett esophagus. Arch Surg 1997; 132: 728-733.

    Google Scholar 

  36. Younes M, Lechago J, Ertan A, Finnie D, Younes A. Decreased expression of Fas (CD95/APO1) associated with goblet cell metaplasia in Barrett's esophagus. Hum Pathol 2000; 31(4): 434-438.

    Google Scholar 

  37. Werneburg NW, Yoon JH, Higuchi H, Gores GJ. Bile acids activate EGF receptor via a TGF-alpha-dependent mechanism in human cholangiocyte cell lines. Am J Physiol 2003; 285: G31-G36.

    Google Scholar 

  38. Woodward TA, Klingler PD, Genko PV, Wolfe JT. Barrett's Esophagus, apoptosis and cell cycle regulation: Correlation of p53 with Bax, Bcl-2 and p21 protein expression. Anticancer Res 2000; 20: 2427-2432.

    Google Scholar 

  39. Chatelain D, Flejou JF. High-grade dysplasia and superficial adenocarcinoma in Barrett's esophagus: Histological mapping and expression of p53, p21 and Bcl-2 oncoproteins. Virchows Arch 2003; 442: 18-24.

    Google Scholar 

  40. Goldblum JR, Rice TW. Bcl-2 protein expression in the Barrett's metaplasia-dysplasia-carcinoma sequence. Modern Pathol 1995; 8: 866-869.

    Google Scholar 

  41. Bhargava P, Eisen GM, Holterman BS, et al. Endoscopic mapping and surrogate markers for better surveillance in Barrett esophagus. Am J Clin Pathol 2000; 114: 552-563.

    Google Scholar 

  42. van derWoude CJ, Jansen PL, TieboschAT, et al. Expression of apoptosis-related proteins in Barrett's metaplasia-dysplasiacarcinoma sequence: A switch to a more resistant phenotype. Hum Pathol 2002; 33: 686-692.

    Google Scholar 

  43. Lauren P. The two histological main types of gastric cancer:Diffuse and so-called intestinal type carcinoma. Acta Parthol Microbiol Scand 1965; 64: 331-349.

    Google Scholar 

  44. Jass JR. Role of intestinal metaplasia in the histogenesis of gastric carcinoma. J Clin Pathol 1980; 33: 801-810.

    Google Scholar 

  45. Huang JQ, Sridhar S, Chen Y, et al. Meta-analysis of the relationship between Helicobacter pylori seropositivity and gastric cancer. Gastroenterology 1998; 114: 1169-1179.

    Google Scholar 

  46. Eslick GD, Lim LLY, Byles JE, et al. Association of Helicobacter pylori infection with gastric carcinoma: A meta-analysis. Am J Gastroenterol 1999; 94: 2373-2379.

    Google Scholar 

  47. Danesh J. Helicobacter pylori infection and gastric cancer: Systematic review of the epidemiological studies. Aliment Pharmacol Ther 1999; 13: 851-856.

    Google Scholar 

  48. Isomoto H, Mizuta Y, Miyazaki M, et al.Implication of NF-?B in Helicobacter pylori-associated gastritis. Am J Gastroenterol 200; 95: 2768-2776.

  49. Keates S, Hitti YS, Upton M, et al. Helicobacter pylori infection activates NF-?Bingastric epithelial cells. Gastroenterology 1997; 113: 1099-1109.

    Google Scholar 

  50. Sharma SA, Tummuru MKR, Blaser MJ, Kerr LD. Activation of IL-8 gene expression by Helicobacter pylori is regulated by transcription factor nuclear factor-kB in gastric epithelial cells. J Immunol 1998; 160: 2401-2407.

    Google Scholar 

  51. Isomoto H, Miyazaki M, Mizuta Y, et al. Expression of nuclear factor-kB in Helicobacter pylori-infected gastric mucosa detected with southwestern histochemistry. Scand J Gastroenterol 2000; 35: 247-254.

    Google Scholar 

  52. Aihara M, Tsuchimoto D, Takizawa H, et al. Mechanisms involved in Helicobacter pylori-induced interleukin-8 production by a gastric cancer cell line, MKN45. Infect Immun 1997; 65: 3218-3224.

    Google Scholar 

  53. Sasaki N, Morisaki T, Hashizume K, et al. Nuclear factorkB p65 (relA) transcription factor is constitutively activated in human gastric carcinoma tissue. Clin Canc Res 2001; 7: 4136-4142.

    Google Scholar 

  54. Wilson KT, Ramujam KS, Mobley HLT, Masselman RF, James SP, Meltzer SJ. Helicobacter pylori stimulates inducible nitric oxide synthase expression and activity in murine macrophage cell line. Gastroenterology 1996; 111: 1524-1533.

    Google Scholar 

  55. Rachmilewitz D, Karmeli F, Eliakim R, et al. Enhanced gastric nitric oxide synthase activity in duodenal ulcer patients. Gut 1994; 35: 1394-1397.

    Google Scholar 

  56. Tatemichi M, Ogura T, Nagata H, Esumi H. Enhanced expression of inducible nitric oxide synthase in chronic gastritis with intestinal metaplasia. J Clin Gastroenterol 1998; 27: 240-245.

    Google Scholar 

  57. Fu S, Ramanujam KS, Wong A, et al. Increased expression and cellular localization of inducible nitric oxide synthase and cyclooxygenase 2 in Helicobacter pylori gastritis. Gastroenterology 1999; 116: 1319-1329.

    Google Scholar 

  58. Pignatelli B, Bancel B, Esteve J, et al. Inducible nitric oxide synthase, anti-oxidant enzymes and Helicobacter pylori infection in gastritis and gastric precancerous lesions in humans. Eur J Cancer Prev 1998; 7: 439-447.

    Google Scholar 

  59. Goto T, Haruma K, Kitadai Y, et al. Enhanced expression of nitric oxide synthase and nitrotyrosine in gastric mucosa of gastric cancer patients. Clin Canc Res 1999; 5: 1411-1415.

    Google Scholar 

  60. Rajnakova A, Moochhala SM, Goh PMY, Ngoi SS. Expression of nitric oxide synthase, cyclooxygenase, and p53 in different stages of human gastric adenocarcinoma. Cancer Lett 2001; 172: 177-185.

    Google Scholar 

  61. Doi C, Noguchi Y, Marat D, et al. Expression of nitric oxide synthase in gastric cancer. Cancer Lett 1999; 144: 161-167.

    Google Scholar 

  62. Koh E, Noh SH, Lee YD, et al. Differential expression of nitric oxide synthase in human stomach cancer.Cancer Lett 1999; 146: 173-180.

    Google Scholar 

  63. Lishi H, Tatsuta M, Baba M, Yamamoto R, Uehara H, Nakaizumi A. Inhibition of experimental gastric carcinogenesis, induced by N-methyl-N'-nitrosoguanidine in rats, by sodium nitroprusside, a nitric oxide generator. Eur J Cancer 1998; 34: 554-557.

    Google Scholar 

  64. Zhang XJ, Ruiz B, Correa P, Miller MJS. Cellular dissociation of NF-?B and inducible nitric oxide synthase in helicobacter pylori infection. Free Radical Biol Med 2002; 29: 730-735.

    Google Scholar 

  65. Lim JW, Kim H, Kim KH. NF-?B, inducible nitric oxide synthase and apoptosis by Helicobacter pylori infection. Free Rad Biol Med 2001; 31: 355-366.

    Google Scholar 

  66. Mccarthy CJ, Crofford LJ, Greenson J, Scheiman JM. Cyclooxygenase expression in gastric antral mucosa before and after eradication of helicobacter pylori infection. Am J Gastroenterol 1999; 94: 1218-1223.

    Google Scholar 

  67. Jackson LM, Wu KC, Mahida YR, Jenkins D, Hawkey CJ. Cyclooxygenase (COX) 1 and 2 in normal, inflamed, and ulcerated human gasrtric mucosa. Gut 2000; 47: 762-770.

    Google Scholar 

  68. Sung JJY, Leung WK, Go MYY, et al. Cyclooxygenase-2 expression in Helicobacter pylori-associated premalignant and malignant gastric lesions. Am J Pathol 2000; 157: 729-735.

    Google Scholar 

  69. Lim HY, Joo HJ, Choi JH, et al. Increased expression of cyclooxygenase-2 protein in human gastric carcinoma. Clin Cancer Res 2000; 6: 519-525.

    Google Scholar 

  70. Ristimaki A, Honkanen N, Jankala H. Expression of cyclooxygenase-2 in human gastric mucosa. Cancer 1997; 57: 1276-1280.

    Google Scholar 

  71. Lim JW, Kim H, Kim KH. Nuclear factor-kB regulates cyclooxygenase-2 expression and cell proliferation in human gastric cancer cells. Lab Invest 2001; 82: 349-360.

    Google Scholar 

  72. Van Grieken NC, Meijer GA, zur Hausen A, Meuwissen SG, Baak J, Kuipers EJ. Increased apoptosis in gastric mucosa adjacent to intestinal metaplasia. J Clin Pathol 2003; 56: 358-361.

    Google Scholar 

  73. Shinohara T, Ohsima K, Murayama H, Kikuchi M, Yamashita Y, Shirakusa T. Apoptosis and proliferation in gastric carcinoma: The association with histological type. Histopathology 1996; 29: 123-129.

    Google Scholar 

  74. Ikeguchi M, Cai J, Yamane N, Maeta M, Kaibara N. Clinical significance of spontaneous apoptosis in advanced gastric adenocarcinoma. Cancer 1999; 85: 2329-2335.

    Google Scholar 

  75. Hoshi T, Sasano H, Kato K, et al. Immunohistochemistry of caspase-3/CPP32 in human stomach and its correlation with cell proliferation and apoptosis. Anticancer Res 1998; 18: 4347-4354.

    Google Scholar 

  76. Kania J, Konturek SJ, Marlicz K, Hahn EG, Konturek PC. Expression of survivin and caspase-3 in gastric cancer. Dig Dis Sci 2003; 48: 266-271.

    Google Scholar 

  77. Li H, Liu N, Guo L, Li JW, Liu J. Frequent expression of soluble Fas and Fas ligand in Chinese stomach cancer and its preneoplastic lesions. Int J Mol Med 2000; 5: 473-476.

    Google Scholar 

  78. Vollmers HP, Dämmrich J, Hensel F, et al. Differential expression of apoptosis receptors on diffuse and intestinal type stomach carcinoma. Cancer 1997; 79: 433-440.

    Google Scholar 

  79. van derWoude CJ, Kleibeuker JH, Tiebosch AT, et al. Diffuse and intestinal type gastric carcinomas differ in their expression of apoptosis related proteins. J Clin Pathol 2003; 56: 699-702.

    Google Scholar 

  80. Ohno S, Tachibana M, Shibakita M, et al. Prognostic significance of Fas and Fas ligand system-associated apoptosis in gastric cancer. Ann Surg Oncol 2000; 7: 750-757.

    Google Scholar 

  81. Lauwers GY, Scott GV, Hendricks J. Immunohistochemical evidence of abberant bcl-2 protein expression in gastric epithelial dysplasia. Cancer 1994; 73: 2900-2904.

    Google Scholar 

  82. Cho JH, Kim WH. Altered topographic expression of p21WAF1/CIP1/SDI1, bcl-2 and p53 during gastric carcinogenesis. Pathol Res Prast 1998; 194: 309-317.

    Google Scholar 

  83. Nakamura T, Nomura S, Skai T, et al. Expression of Bcl-2 oncoprotein in gastrointestinal and uterine carcinomas and their premalignant lesions. Hum Pathol 1997; 28: 309-315.

    Google Scholar 

  84. Clarke NR, Safatle-Ribeiro AV, Ribeiro U, Sakai P, Reynolds JC. Bcl-2 expression in gastric remnant mucosa and gastric cancer 15 or more years after partial gastrectomy. Mod Pathol 1997; 10: 1021-1027.

    Google Scholar 

  85. Saegusa M, Takano Y, Okayasu I. Bcl-2 expression and its association with cell kinetics in human gastric carcinomas and intestinal metaplasia. J Cancer Res Clin Oncol 1995; 121: 357-363.

    Google Scholar 

  86. Kyokane K, Ito M, Sato Y, Ina K, Ando T, Kusugami K. Expression of Bcl-2 and p53 correlates with the morphology of gastric neoplasia. J Pathol 1998; 184: 382-389.

    Google Scholar 

  87. Inada T, Kikuyama S, Ichikawa A, Igarashi S, Ogata Y. Bcl-2 expression as a prognostic factor of survival of gastric carcinoma. Anticancer Res 1998; 18: 2003-2010.

    Google Scholar 

  88. Nakata B, Muguruma K, Hirakawa K, et al. Predictive value of Bcl-2 and Bax protein expression for chemotherapeutic effect in gastric cancer. Oncology 1998; 55: 543-547.

    Google Scholar 

  89. Klein RF, Vollmers HP, Mller-Hermelink HK. Different expression of Bcl-2 in diffuse and intestinal-type stomach carcinomas. Oncol Rep 1996; 3: 1-4.

    Google Scholar 

  90. Krajewska M, Fenoglio-Preiser CM, Krajewski S, et al. Immunohistochemical analysis of Bcl-2 family proteins in adenocarcinomas of the stomach. Am J Pathol 1996; 149: 1449-1457.

    Google Scholar 

  91. Konturek PC, Konturek SJ, Sulekova Z, et al. Expression of hepatocyte growth factor, transforming growth factor alpha, apoptosis related proteins Bax and Bcl-2 and gastrin in human gastric cancer. Aliment Pharmacol Ther 2001; 15: 989-999.

    Google Scholar 

  92. Schreiber S, Nikolaus S, Hampe J. Activation of nuclear factor kappa B in inflammatory bowel diseases. Gut 1998; 42: 477-484.

    Google Scholar 

  93. Rogler G, Brand K, Vogl D, et al. Nuclear factor kappa B is activated in macrophages and epithelial cells of inflamed intestinal mucosa. Gastroenterology 1998; 115: 357-369.

    Google Scholar 

  94. Yin MJ, Yamamoto Y, Gaynor RB. The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B kinase-beta. Nature 1998; 396: 77-80.

    Google Scholar 

  95. Egan LJ, Mays DC, Huntoon CJ, et al. Inhibition of interleukin-1-stimulated NF-kappaB RelA/p65 phosphorylation by mesalamine is accompanied by decreased transcriptional activity. J Biol Chem 1999; 274: 26448-26453.

    Google Scholar 

  96. Scheinman RI, Cogswell PC, Lofquist AK, Baldwin AS. Role of transcriptional activation of I kappa B alpha in mediation of immunosuppression by glucocorticoids. Science 1995; 270: 283-286.

    Google Scholar 

  97. Yamamoto Y, Gaynor RB. Therapeutic potential of inhibition of the NF-kappa B pathway in the treatment of inflammation and cancer. J Clin Invest 2001; 107: 135-142.

    Google Scholar 

  98. Singer II, Kawka DW, Scott S, et al. Expression of inducible nitric oxide synthase and nitrotyrosine in colonic epithelium in inflammatory bowel disease. Gastroenterology 1996; 111: 871-885.

    Google Scholar 

  99. Iwashita E, Miyahara T, Hino K, Tokunaga T, Wakisaka H, Sawazaki Y. High nitric oxide synthase activity in endothelial cells in ulcerative colitis. J Gastroenterol 1995; 30: 551-554.

    Google Scholar 

  100. Dijkstra G, Moshage H, van Dullemen HM, et al. Expression of nitirc oxide synthases and formation of nitrotyrosine and reactive oxygen species in inflammatory bowel disease. J Pathol 1998; 186: 416-421.

    Google Scholar 

  101. Singer II, Kawka DW, Schloemann S, Tessner T, Riehl T, Stenson WF. Cycloooxygenase 2 is induced in colonic epithelial cells in inflammatory bowel disease. Gastroenterology 1998; 115: 297-306.

    Google Scholar 

  102. Hendel J, Nielsen OH. Expression of cyclooxygenase-2 mRNA in active inflammatory bowel disease. Am J Gastroenterol 1997; 92: 1170-1173.

    Google Scholar 

  103. Agoff SN, Brentnall TA, Crispin DA, et al. The role of cyclooxygenase 2 in ulcerative colitis-associated neoplasia. Am J Pathol 2000; 157: 737-745.

    Google Scholar 

  104. Ciccocioppo R, Di Sabatino A, Gasbarrini G. Apoptosis and gastrointestinal tract. Ital J Gastroenterol Hepatol 1999; 116: 177-184.

    Google Scholar 

  105. Limura M, Nakamura T, Shinozaki S, et al. Bax is downregulated in inflamed colonic mucosa of ulcerative colitis. Gut 2000; 47: 228-235.

    Google Scholar 

  106. Ogura E, Senzaki H, Yamamoto D, et al. Prognostic signifi-cance of Bcl-2, Bcl-xl/s, Bax and Bak expressions in colorectal carcinomas. Oncol Rep 1999; 6: 365-369.

    Google Scholar 

  107. Moss SF, Agarwal B, Arber N. Increased intestinal Bak expression results in apoptosis. Biochem Biophys Res Commun 1996; 223: 199-203.

    Google Scholar 

  108. Liu LU, Holt PR, Krivosheyev V, Moss SF. Human right and left colon differ in epithelial cell apoptosis and in expression of Bak, a pro-apoptotic Bcl-2 homologue. Gut 1999; 45: 45-50.

    Google Scholar 

  109. Möller P, Koretz K, Leithäuser F, et al. Expression of APO-1 (CD95), a member of the NGF/TNF receptor superfamily, in normal and neoplastic colon epithelium. Int J Cancer 1994; 57: 371-377.

    Google Scholar 

  110. Sträter J, Wellisch I, Riedl S, et al. CD95 (APO-1/Fas)-mediated apoptosis in colon epithelial cells: A possible role in ulcerative colitis. Gastroenterology 1997; 113: 160-167.

    Google Scholar 

  111. Ueyama H, Kiyohara T, Sawada N, et al. High Fas ligand expression on lymphocytes in lesions of ulcerative colitis. Gut 1998; 43: 48-55.

    Google Scholar 

  112. Bronner MP, Culin C, Reed JC, Furth EE. The bcl-2 protooncogene and the gastrointestinal epithelial tumor progression model. Am J Pathol 1995; 146: 20-26.

    Google Scholar 

  113. Mueller E, Vieth M, Stolte M, Mueller J. The differentiation of true adenomas from colitis-associated dysplasia in ulcerative colitis:Acomparative immunohistochemical study. Hum Pathol 1999; 30: 898-905.

    Google Scholar 

  114. Ilyas M, Tomlinson IPM, Hanby AM, Yao T, Bodmer WF, Talbot IC. Bcl-2 expression in colorectal tumors. Evidence of different pathways in sporadic and ulcerativecolitis-associated carcinomas. Am J Pathol 1996; 149: 1719-1726.

    Google Scholar 

  115. Mikami T, Yoshida T, Akino F, Motoori T, Yajima M, Okayasa I. Apoptosis regulation differs between ulcerative colitis-associated and sporadic colonic tumors. Association with survivin and bcl-2. Am J Clin Pathol 2003; 119: 723-730.

    Google Scholar 

  116. Wahl C, Liptay S, Adler G, Schmid RM. Sulfasalazine: A potent and specific inhibitor of NF-kappa B. J Clin Invest 1998; 101: 1163-1174.

    Google Scholar 

  117. Kaiser GC, Yan F, Polk DB. Mesalamine blocks TNF growth inhibition and NF-kappa B activation in mouse colonocytes. Gastroenterology 1999; 116: 602-609.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. van der Woude.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Woude, C.J., Kleibeuker, J.H., Jansen, P.L.M. et al. Chronic inflammation, apoptosis and (pre-)malignant lesions in the gastro-intestinal tract. Apoptosis 9, 123–130 (2004). https://doi.org/10.1023/B:APPT.0000018794.26438.22

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:APPT.0000018794.26438.22

Navigation