Skip to main content
Log in

Inheritance of Lysosomal Acid β-Galactosidase Activity and Gangliosides in Crosses of DBA/2J and Knockout Mice

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

GM1 gangliosidosis is a progressive neurodegenerative disease caused by deficiencies in lysosomal acid β-galactosidase (β-gal) and involves accumulation and storage of ganglioside GM1 and its asialo form (GA1) in brain and visceral tissues. Similar to the infantile/juvenile human disease forms, B6/129Sv β-gal knockout (ko) mice express residual tissue β-gal activity and significant elevations of brain GM1, GA1, and total gangliosides. Previous studies suggested that inbred DBA/2J (D2) mice may model a mild form of the human disease since total brain ganglioside and GM1 concentration is higher while β-gal specific activity is lower (by 70–80%) in D2 mice than in inbred C57BL/6J (B6) mice and other mouse strains. A developmental genetic analysis was conducted to determine if the genes encoding β-gal (Bgl) in the D2 and the ko mice were functionally allelic and if the reduced brain β-gal activity in D2 mice could account for elevations in total brain gangliosides and GM1. Crosses were made between D2 mice homozygous for the Bgl d allele (d/d), and either B6/129Sv mice heterozygous for the Bgl + allele (+/−) or homozygous for the ko Bgl allele (−/−) to generate d−/+ and d−/− mice. Specific β-gal activity (nmol/mg protein/h) showed additive inheritance in brain, liver, and kidney at juvenile (21 days) and adult (255 days) ages with the d−/− mice having only about 16% of the β-gal activity as that in the +/+ mice. These results indicate that the Bgl genes in the D2 and the ko mice are noncomplementing functional alleles. However, the d−/− mice did not express GA1 and had total brain ganglioside and GM1 concentrations similar to those in the d−/+ and +/+ mice. These results suggest that the reduced brain β-gal activity alone cannot account for the elevation of total brain gangliosides and GM1 in the D2 mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Ando, S., Chang, N. C., and Yu, R. K. (1978). High-performance thin-layer chromatography and densitometric determination of brain ganglioside compositions of several species. Anal. Biochem. 89:437–450.

    PubMed  Google Scholar 

  • Ando, S., Tanaka, Y., Ono, Y., and Kon, K. (1984). Incorporation rate of GM1 ganglioside into mouse brain myelin: Effect of aging and modification by hormones and other compounds. Adv. Exp. Med. Biol. 174:241–248.

    PubMed  Google Scholar 

  • Bauman, N., Harpin, M. L., and Jacque, J. (1980). Brain gangliosides in shiverer mutant mouse. Comparison with other dysmyelinated mutants quaking and jimpy. In Bauman, N. (ed.), Neurological Mutations Affecting Myelination, Elsevier, Amsterdam, pp. 257–262.

    Google Scholar 

  • Berger, F. G., Breen, G. A., and Paigen, K. (1979). Genetic determination of the developmental program for mouse liver beta-galactosidase: Involvement of sites proximate to and distant from the structural gene. Genetics 92:1187–1203.

    PubMed  Google Scholar 

  • Berger, F. G., and Paigen, K. (1979). Cis-active control of mouse beta-galactosidase biosynthesis by a systemic regulatory locus. Nature 282:314–316.

    PubMed  Google Scholar 

  • Bouvier, J. D., and Seyfried, T. N. (1990). Ganglioside GM1 elevation in DBA/2 mouse embryos. Dev. Neurosci. 12:126–132.

    PubMed  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.

    PubMed  Google Scholar 

  • Chakraborty, M., Lahiri, P., and Chatterjee, D. (1992). Thyroidal influence on the cell surface GM1 of granule cells: Its significance in cell migration during rat brain development. Cell. Mol. Neurobiol. 12:589–596.

    PubMed  Google Scholar 

  • Conzelmann, E., and Sandhoff, K. (1983). Partial enzyme deficiencies: Residual activities and the development of neurological disorders. Dev. Neurosci. 6:58–71.

    PubMed  Google Scholar 

  • Dreyfus, H., Harth, S., Giuliani-Debernardi, A., Roos, M., Mack, G., and Mandel, P. (1982). Gangliosides in various brain areas of three inbred strains of mice. Neurochem. Res. 7:477–488.

    PubMed  Google Scholar 

  • Ecsedy, J. A., Yohe, H. C., and Seyfried, T. N. (1997). Glycosphingolipid composition of tumorinfiltrating macrophages in murine brain tumors. J. Neurochem. 69:S12.

    Google Scholar 

  • Felton, J., Meisler, M., and Paigen, K. (1974). A locus determining beta-galactosidase activity in the mouse. J. Biol. Chem. 249:3267–3272.

    PubMed  Google Scholar 

  • Folch, J., Lees, M., and Sloane-Stanley, G. H. (1957).Asimple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226:497–509.

    PubMed  Google Scholar 

  • Galjaard, H. (1980). Genetic Metabolic Disease: Diagnosis and Prenatal Analysis, Elsevier Science, Amsterdam.

    Google Scholar 

  • Gross, S., Summers, A., and McCluer, R. H. (1977). Formation of ganglioside internal esters by treatment with trichloroacetic acid-phosphotungstic acid reagent. J. Neurochem. 28:1133–1136.

    PubMed  Google Scholar 

  • Hahn, C. N., del Pilar Martin, M., Schroder, M., Vanier, M. T., Hara, Y., Suzuki, K., Suzuki, K., and Azzo, A. (1997). Generalized CNS disease and massive GM1-ganglioside accumulation in mice defective in lysosomal acid beta-galactosidase. Hum. Mol. Genet. 6:205–211.

    PubMed  Google Scholar 

  • Hara,Y., Nishimoto, J., and Suzuki, K. (1994). Effects of double amino-acid substitution polymorphism in acid beta-galactosidase gene in two inbred strains of mice. Biochim. Biophys. Acta 1217:49–53.

    PubMed  Google Scholar 

  • Hauser, E. C., d'Azzo, A., and Seyfried, T. N. (2002). Inheritance of brain beta-galactosidase activities and gangliosides in crosses of DBA/2J and knockout mice. J. Neurochem. 81(Suppl. 1):11.

    Google Scholar 

  • Johnson, W. G., Hong, J. L., and Knights, S. M. (1986). Variation in ten lysosomal hydrolase enzyme activities in inbred mouse strains. Biochem. Genet. 24:891–909.

    PubMed  Google Scholar 

  • Ledeen, R.W., Yu, R. K., and Eng, L. F. (1973). Gangliosides of human myelin: Sialosylgalactosylceramide (G7) as a major component. J. Neurochem. 21:829–839.

    PubMed  Google Scholar 

  • Matsuda, J., Suzuki, O., Oshima, A., Ogura, A., Naiki, M., and Suzuki, Y. (1997a). Neurological manifestations of knockout mice with beta-galactosidase deficiency. Brain Dev. 19:19–20.

    PubMed  Google Scholar 

  • Matsuda, J., Suzuki, O., Oshima, A., Ogura, A., Noguchi, Y., Yamamoto, Y., Asano, T., Takimoto, K., Sukegawa, K., Suzuki, Y., and Naiki, M. (1997b). Beta-galactosidase-deficient mouse as an animal model for GM1-gangliosidosis. Glycoconj. J. 14:729–736.

    PubMed  Google Scholar 

  • Matthieu, J. M., Widmer, S., and Herschkowitz, N. (1973). Biochemical changes in mouse brain composition during myelination. Brain Res. 55:391–402.

    PubMed  Google Scholar 

  • Meisler, M. H. (1976). Effects of the Bgs locus on mouse beta-galactosidase. Biochem. Genet. 14:921–932.

    PubMed  Google Scholar 

  • Meisler, M. H. (1978). Synthesis and secretion of kidney beta-galactosidase in mutant le/le mice. J. Biol. Chem. 253:3129–3134.

    PubMed  Google Scholar 

  • Miettinen, T., and Takki-Luukkainen, I. T. (1959). Use of butyl acetate in the determination of sialic acid. Acta Chem. Scand. 13:856–858.

    Google Scholar 

  • Noguchi, T., and Sugisaki, T. (1986). Stimulatory effects of growth hormone and thyroxine on the concentration of gangliosides in the Snell dwarf cerebrum. J. Neurochem. 47:1785–1792.

    PubMed  Google Scholar 

  • Saito, M., and Sugiyama, K. (2000). Specific ganglioside changes in extraneural tissues of adult rats with hypothyroidism. Biochim. Biophys. Acta 1523:230–235.

    PubMed  Google Scholar 

  • Sandhoff, K., and Conzelmann, E. (1984). The biochemical basis of gangliosidoses. Neuropediatrics 15(Suppl):85–92.

    PubMed  Google Scholar 

  • Seyedyazdani, R., Floderus, Y., and Lundin, L. G. (1975). Molecular nature of beta-galactosidase from different tissues in two strains of the house mouse. Biochem. Genet. 13:733–742.

    PubMed  Google Scholar 

  • Seyfried, T. N., Ando, S., and Yu, R. K. (1978a). Isolation and characterization of human liver hematoside. J. Lipid Res. 19:538–543.

    PubMed  Google Scholar 

  • Seyfried, T. N., and Ariga, T. (1992). Neutral glycolipid abnormalities in a t-complex mutant mouse embryo. Biochem. Genet. 30:557–565.

    PubMed  Google Scholar 

  • Seyfried, T. N., Bernard, D. J., and Yu, R. K. (1987). Effect of Purkinje cell loss on cerebellar gangliosides in nervous mutant mice. J. Neurosci. Res. 17:251–255.

    PubMed  Google Scholar 

  • Seyfried, T. N., and Daniel, W. L. (1977). Inheritance of brain weight in two strains of mice. J. Hered. 68:337–338.

    Google Scholar 

  • Seyfried, T. N., Glaser, G. H., and Yu, R. K. (1978b). Cerebral, cerebellar, and brain stem gangliosides in mice susceptible to audiogenic seizures. J. Neurochem. 31:21–27.

    PubMed  Google Scholar 

  • Seyfried, T. N., Glaser, G. H., and Yu, R. K. (1978c). Developmental analysis of regional brain growth and audiogenic seizures in mice. Genetics 88:S90.

    Google Scholar 

  • Seyfried, T. N., Glaser, G. H., and Yu, R. K. (1979a). Genetic variability for regional brain gangliosides in five strains of young mice. Biochem. Genet. 17:43–55.

    PubMed  Google Scholar 

  • Seyfried, T. N., Glaser, G. H., and Yu, R. K. (1979b). Thyroid hormone influence on the susceptibility of mice to audiogenic seizures. Science 205:598–600.

    PubMed  Google Scholar 

  • Seyfried, T. N., Weber, E. J., and Yu, R. K. (1977). Influence of trichloroacetic acid-phosphotungstic acid on the thin-layer chromatographic mobility of gangliosides. Lipids 12:979–980.

    PubMed  Google Scholar 

  • Seyfried, T. N., and Yu, R. K. (1980). Heterosis for brain myelin content in mice. Biochem. Genet. 18:1229–1238.

    PubMed  Google Scholar 

  • Seyfried, T. N., Yu, R. K., and Miyazawa, N. (1982). Differential cellular enrichment of gangliosides in the mouse cerebellum: Analysis using neurological mutants. J. Neurochem. 38:551–559.

    PubMed  Google Scholar 

  • Suzuki, K. (1964). A simple and accurate micromethod for quantitative determination of ganglioside patterns. Life Sci. 3:1227–1233.

    Google Scholar 

  • Suzuki, K., Poduslo, J. F., and Norton, W. T. (1967). Gangliosides in the myelin fraction of developing rats. Biochim. Biophys. Acta 144:375–381.

    PubMed  Google Scholar 

  • Suzuki, K., Poduslo, J. F., and Poduslo, S. E. (1968). Further evidence for a ganglioside fraction closely associated with myelin. Biochim. Biophys. Acta 152:576–586.

    PubMed  Google Scholar 

  • Suzuki, Y., Sakuraba, H., and Oshima, A. (1995). Galactosidase deficiency ogalactosidosis): GM1 gangliosidosis and Morquio B disease. In Scriver, C. R., Beaudet, A. L., Sly, W. S., and Valle, D. (eds.), The Metabolic and Molecular Bases of Inherited Disease, Vol. II, McGraw-Hill, New York, pp. 2785–2823.

    Google Scholar 

  • Svennerholm, L. (1957). Quantitative estimation of sialic acids II. A colorimetric resorcinolhydrochloric acid method. Biochim. Biophys. Acta 24:604–611.

    PubMed  Google Scholar 

  • Tohyama, J., Vanier, M. T., Suzuki, K., Ezoe, T., and Matsuda, J. (2000). Paradoxical influence of acid beta-galactosidase gene dosage on phenotype of the twitcher mouse (genetic galactosylceramidase deficiency). Hum. Mol. Genet. 9:1699–1707.

    PubMed  Google Scholar 

  • Wassle,W., and Sandhoff, K. (1968). Apparatus for the loading of samples on to thin layer chromatography plates. J. Chromatogr. 34:357–363.

    PubMed  Google Scholar 

  • Wheeler, D. F., and Bachelard, H. S. (1984). Substrate specificity and distribution of acid betagalactosidase activities in seizure-susceptible and non-susceptible strains of mice. Neurochem. Res. 9:849–862.

    PubMed  Google Scholar 

  • Wheeler, D. F., Contreras, N. E., and Bachelard, H. S. (1982). DNA content and enzymic activities in the auditory regions of seizure-susceptible and non-susceptible strains of mice. Neurochem. Res. 7:1075–1088.

    PubMed  Google Scholar 

  • Williams, M. A., and McCluer, R. H. (1980). The use of Sep-Pak C18 cartridges during the isolation of gangliosides. J. Neurochem. 35:266–269.

    PubMed  Google Scholar 

  • Williams, R. W. (2000). Mapping genes that modulate mouse brain development: A quantitative approach. In Goffinet, A. M., and Rakic, P. (eds.), Mouse Brain Development, Springer, New York, pp. 21–49.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas N. Seyfried.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hauser, E.C., Kasperzyk, J.L., d'Azzo, A. et al. Inheritance of Lysosomal Acid β-Galactosidase Activity and Gangliosides in Crosses of DBA/2J and Knockout Mice. Biochem Genet 42, 241–257 (2004). https://doi.org/10.1023/B:BIGI.0000034429.55418.71

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BIGI.0000034429.55418.71

Navigation