Skip to main content
Log in

Patterns of Microsatellite Variability in the Drosophila Melanogaster Complex

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Forty-seven microsatellite loci were amplified in Drosophila melanogaster, Drosophila simulans, Drosophila mauritiana and Drosophila sechellia. The two cosmopolitan species D. melanogaster and D. simulans were found to be the most variable ones, followed by D. mauritiana and D. sechellia. A model based clustering algorithm was applied to the population samples of D. melanogaster, D. simulans and D. sechellia. No evidence for population substructure was detected within species-most likely due to insufficient power. A Markov chain Monte Carlo method developed for demographic inference based on microsatellites provided unambiguous evidence for population contraction in D. melanogaster, D. simulans and D. sechellia, despite that the D. melanogaster and D. simulans population samples were of non-African origin and represented recently expanded populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, M.D., S.E. Celniker, R.A. Holt, et al., 2000. The genome sequence of Drosophila melanogaster. Science 287: 2185–2195.

    Google Scholar 

  • Agis, M. & C. Schlötterer, 2001. Microsatellite variation in natural Drosophila melanogaster populations from New South Wales (Australia) and Tasmania. Mol. Ecol. 10: 1197–1205.

    Google Scholar 

  • Andolfatto, P., 2001. Contrasting Patterns of X-Linked and Autosomal Nucleotide Variation in Drosophila melanogaster and Drosophila simulans. Mol. Biol. Evol. 18: 279–290.

    Google Scholar 

  • Bachtrog, D., M. Agis, M. Imhof & C. Schlötterer, 2000. Microsatellite variability differs between dinucleotide repeat motifs-evidence from Drosophila melanogaster. Mol. Biol. Evol. 17: 1277–1285.

    Google Scholar 

  • Beaumont, M.A., 1999. Detecting population expansion and decline using microsatellites. Genetics 153: 2013–2029.

    Google Scholar 

  • Colson, I. & D.B. Goldstein, 1999. Evidence for complex mutations at microsatellite loci in Drosophila. Genetics 152: 617–627.

    Google Scholar 

  • Dieringer, D. & C. Schlötterer, 2003. Microsatellite analyzer (MSA)-a platform independent analysis tool for large microsatellite data sets. Molecular Ecology Notes 3: 167–169.

    Google Scholar 

  • Ellegren, H., C.R. Primmer & B.C. Sheldon, 1995. Microsatellite 'evolution': directionality or bias? Nat. Genet. 11: 360–362.

    Google Scholar 

  • Felsenstein, J., 1991. PHYLIP, Version 3.57c, University of Washington, Seattle.

    Google Scholar 

  • Goldstein, D. & C. Schlötterer, 1999. Microsatellites: Evolution and Applications. Oxford University Press, Oxford.

    Google Scholar 

  • González, A.M., V.M. Cabrera, J.M. Larruga & A. Gullón, 1982. Genetic distance in the sibling species Drosophila melanogaster, Drosophila simulans and Drosophila mauritiana. Evolution 36: 517–522.

    Google Scholar 

  • Harpending, H.C., M.A. Batzer, M. Gurven, L.B. Jorde, A.R. Rogers & S.T. Sherry, 1998. Genetic traces of ancient demography. Proc. Natl. Acad. Sci. USA 95: 1961–1967.

    Google Scholar 

  • Harr, B. & C. Schlötterer, 2000. Long microsatellite alleles in Drosophila melanogaster have a downward mutation bias and short persistence times, which cause their genome-wide underrepresentation. Genetics 155: 1213–1220.

    Google Scholar 

  • Harr, B., S. Weiss, J.R. David, G. Brem & C. Schlötterer, 1998. A microsatellite-based multilocus phylogeny of the Drosophila melanogaster species complex. Curr. Biol. 8: 1183–1186.

    Google Scholar 

  • Hey, J. & R.M. Kliman, 1993. Population genetics and phylogenetics of DNA sequence variation at multiple loci within the Drosophila melanogaster species complex. Mol. Biol. Evol. 10: 804–822.

    Google Scholar 

  • Hutter, C.M., M.D. Schug & C.F. Aquadro, 1998. Microsatellite variation in Drosophila melanogaster and Drosophila simulans: a reciprocal test of the ascertainment bias hypothesis. Mol. Biol. Evol. 15: 1620–1636.

    Google Scholar 

  • Irvin, S.D., K.A. Wetterstrand, C.M. Hutter & C.F. Aquadro, 1998. Genetic variation and differentiation at microsatellite loci in Drosophila simulans: evidence for founder effects in new world populations. Genetics 150: 777–790.

    Google Scholar 

  • Kauer, M., B. Zangerl, D. Dieringer & C. Schlötterer, 2002. Chromosomal patterns of microsatellite variability contrast sharply in African and non-African populations of Drosophila melanogaster. Genetics 160: 247–256.

    Google Scholar 

  • Kliman, R.M., P. Andolfatto, J.A. Coyne, F. Depaulis, M. Kreitman, A.J. Berry, J. McCarter, J. Wakeley & J. Hey, 2000. The population genetics of the origin and divergence of the Drosophila simulans complex species. Genetics 156: 1913–1931.

    Google Scholar 

  • Lachaise, D., M.-L. Cariou, J.R. David, F. Lemeunier, L. Tsacas & M. Ashburner, 1988. Historical biogeography of the Drosophila melanogaster species subgroup. Evol. Biol. 22: 159–225.

    Google Scholar 

  • Miller, S.A., D.D. Dykes & H.F. Polesky, 1988. A simple salting out procedure for extracting DNA from human nucleated cells. Nucl. Acids Res. 16: 1215.

    Google Scholar 

  • Minch, E., A. Ruiz-Linares, D. Goldstein, M. Feldman & L.L. Cavalli-Sforza, 1995. Microsat (version 1.4d): a computer program for calculating various statistics on microsatellite allele data.

  • Moriyama, E.N. & J.R. Powell, 1996. Intraspecific nuclear DNA variation in Drosophila. Mol. Biol. Evol. 13: 261–277.

    Google Scholar 

  • Page, R.D.M., 1996. TREEVIEW: an application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12: 357–358.

    Google Scholar 

  • Pritchard, J.K., M. Stephens & P. Donnelly, 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945–959.

    Google Scholar 

  • Saitou, R.K. & M. Nei, 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.

    Google Scholar 

  • Schlötterer, C., 2000. Evolutionary dynamics of microsatellite DNA. Chromosoma 109: 365–371.

    Google Scholar 

  • Schlötterer, C. & J. Pemberton, 1998. The use of microsatellites for genetic analysis of natural populations-a critical review, pp. 71–86 in Molecular Approaches to Ecology and Evolution, edited by R. DeSalle & B. Schierwater. Birkhäuser, Basel.

    Google Scholar 

  • Schlötterer, C. & B. Zangerl, 1999. The use of imperfect microsatellites for DNA fingerprinting and population genetics, pp. 153–165 in DNA Profiling and DNA Fingerprinting, edited by J.T. Epplen & T. Lubjuhn. Birkhäuser, Basel.

    Google Scholar 

  • Schlötterer, C., C. Vogl & D. Tautz, 1997. Polymorphism and locus-specific effects on polymorphism at microsatellite loci in natural Drosophila melanogaster populations. Genetics 146: 309–320.

    Google Scholar 

  • Schlötterer, C., R. Ritter, B. Harr & G. Brem, 1998. High mutation rates of a long microsatellite allele in Drosophila melanogaster provides evidence for allele-specific mutation rates. Mol. Biol. Evol. 15: 1269–1274.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harr, B., Schlötterer, C. Patterns of Microsatellite Variability in the Drosophila Melanogaster Complex. Genetica 120, 71–77 (2004). https://doi.org/10.1023/B:GENE.0000017631.00820.49

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GENE.0000017631.00820.49

Navigation