Skip to main content
Log in

Extracellular functions of galectin-3

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Galectin-3 has been suspected of modulating cell to extracellular matrix interactions in a novel fashion ever since it was first described. However, the rapid accumulation of research data in just the last 8 years alone has completely changed our perspective of this multifunctional protein. Its chimeric nature (consists of carbohydrate recognition and collagen like domains) somehow makes it suited to interact with a plethora of interesting extracellular matrix proteins some of which might enable it to cross the plasma membrane despite its lack of appropriate signal peptides. It is now becoming established as a mediator of signal transduction events on the cell surface as well as a mediator of a variety of extra-cellular processes such as kidney development, angiogenesis, neuronal functions, tumor metastasis, autoimmune disorders, endocytosis and possibly exocytosis. Nevertheless, it still retains its unique position as a mediator/modulator of cell to extracellular matrix adhesive interactions. Cells, particularly epithelial cells which lack galectin-3 expression, interact poorly with their extracellular matrices. In some of these processes, it functions as a matricellular protein, displaying both pro- and anti-adhesive properties. Published in 2004.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Barondes SH, Cooper DN, Gitt MA, Leffler H Galectins. Structure and function of a large family of animal lectins, J Biol Chem 269, 20807-10 (1994).

    Google Scholar 

  2. Davidson PJ, Davis MJ, Patterson RJ, Ripoche MA, Poirier F, Wang JL, Shuttling of galectin-3 between the nucleus and cytoplasm, Glycobiology 12, 329-7 (2002).

    Google Scholar 

  3. Yu F, Finley RL Jr, Raz A, Kim HR, Galectin-3 translocates to the perinuclear membranes and inhibits cytochrome c release from the mitochondria. A role for synexin in galectin-3 translocation, J Biol Chem 277, 15819-27 (2002).

    Google Scholar 

  4. Dagher SF, Wang JL, Patterson RJ, Identification of galectin-3 as a factor in pre-mRNA splicing, Proc Natl Acad Sci USA 92, 1213-7 (1995).

    Google Scholar 

  5. Akahani S, Nangia-Makker P, Inohara H, Kim HR, Raz A, Galectin-3: A novel antiapoptotic molecule with a functional BH1 (NWGR) domain of Bcl-2 family, Cancer Res 57, 5272-6 (1997).

    Google Scholar 

  6. Kim HR, Lin HM, Biliran H, Raz A, Cell cycle arrest and inhibition of anoikis by galectin-3 in human breast epithelial cells, Cancer Res. 59, 4148-54 (1999).

    Google Scholar 

  7. Yang RY, Hsu DK, Liu FT, Expression of galectin-3 modulates T-cell growth and apoptosis, Proc Natl Acad Sci USA 93, 6737-42 (1996).

    Google Scholar 

  8. Bao Q, Hughes RC, Galectin-3 expression and effects on cyst enlargement and tubulogenesis in kidney epithelial MDCK cells cultured in three-dimensional matrices in vitro, J Cell Sci 108, 2791-800 (1995).

    Google Scholar 

  9. Liu FT, Frigeri LG, Gritzmacher CA, Hsu DK, Robertson MW, Zuberi RI, Expression and function of an IgE-binding animal lectin (epsilon BP) in mast cells, Immunopharmacology 26, 187- 95 (1993).

    Google Scholar 

  10. Raz6 A, Lotan R, Endogenous galactoside-binding lectins: A new class of functional tumor cell surface molecules related to metastasis, Cancer Metastasis Rev 6, 433-52 (1987).

    Google Scholar 

  11. Colnot C, Fowlis D, Ripoche MA, Bouchaert I, Poirier F, Embryonic implantation in galectin 1/galectin 3 double mutant mice, Dev Dyn 211, 306-13 (1998).

    Google Scholar 

  12. Colnot C, Sidhu SS, Balmain N, Poirier F, Uncoupling of chondrocyte death and vascular invasion in mouse galectin 3 null mutant bones, Dev Biol 229, 203-14 (2001).

    Google Scholar 

  13. Seetharaman J, Kanigsberg A, Slaaby R, Leffler H, Barondes SH, Rini JM, X-ray crystal structure of the human galectin-3 carbohydrate recognition domain at 2.1-A resolution, J Biol Chem 273, 13047-52 (1998).

    Google Scholar 

  14. Bachhawat-Sikder K, Thomas CJ, Surolia A, Thermodynamic analysis of the binding of galactose and poly-N-acetyllactosamine derivatives to human galectin-3, FEBS Letters 500, 75-9 (2001).

    Google Scholar 

  15. Sorme P, Qian Y, Nyholm PG, Leffler H, Nilsson UJ, Low micromolar inhibitors of galectin-3 based on 3_-derivatization of N-acetyllactosamine, Chembiochem 3, 183-9 (2002).

    Google Scholar 

  16. Barboni EA, Bawumia S, Hughes RC, Kinetic measurements of binding of galectin 3 to a laminin substratum, Glycoconj J 16, 365-73 (1999).

    Google Scholar 

  17. Ochieng J, Fridman R, Nangia-Makker P, Kleiner DE, Liotta LA, Stetler-Stevenson WG, Raz A, Galectin-3 is a novel substrate for human matrix metalloproteinases-2 and -9, Biochemistry 33, 14109-14 (1994).

    Google Scholar 

  18. Ochieng J, Green B, Evans S, James O, Warfield P, Modulation of the biological functions of galectin-3 by matrix metalloproteinases, Biochim Biophys Acta 1379, 97-106 (1998).

    Google Scholar 

  19. Ochieng J, Platt D, Tait L, Hogan V, Raz T, Carmi P, Raz A, Structure-function relationship of a recombinant human galactoside-binding protein, Biochemistry 32, 4455-60 (1993).

    Google Scholar 

  20. Dong S, Hughes RC, Galectin-3 stimulates uptake of extracellular Ca2+ in human Jurkat T-cells, FEBS Lett 395, 165-9 (1996).

    Google Scholar 

  21. Cortegano I, Pozo V, Cardaba B, Arrieta I, Gallardo S, Rojo M, Aceituno E, Takai T, Verbeek S, Palomino P, Liu FT, Lahoz C, Interaction between galectin-3 and FcgammaRII induces downregulation of IL-5 gene: Implication of the promoter sequence IL-5REIII, Glycobiology 10, 237-42 (2000).

    Google Scholar 

  22. Jeng KC, Frigeri LG, Liu FT, An endogenous lectin, galectin-3 (epsilon BP/Mac-2), potentiates IL-1 production by human monocytes, Immunol Lett 42, 113-6 (1994).

    Google Scholar 

  23. Liu FT, Hsu DK, Zuberi RI, Kuwabara I, Chi EY, Henderson WR Jr, Expression and function of galectin-3, a beta-galactoside-binding lectin, in human monocytes and macrophages, Am J Pathol 147, 1016-28 (1995).

    Google Scholar 

  24. Zuberi RI, Frigeri LG, Liu FT, Activation of rat basophilic leukemia cells by epsilon BP, an IgE-binding endogenous lectin, Cell Immunol 156, 1-12 (1994).

    Google Scholar 

  25. Truong6 MJ, Gruart V, Liu FT, Prin L, Capron A, Capron M, IgE-binding molecules (Mac-2/epsilon BP) expressed by human eosinophils. Implication in IgE-dependent eosinophil cytotoxicity, Eur J Immunol 23, 3230-5 (1993).

    Google Scholar 

  26. Feuk-Lagerstedt E, Jordan ET, Leffler H, Dahlgren C, Karlsson A, Identification of CD66a and CD66b as the major galectin-3 receptor candidates in human neutrophils, J Immunol 163, 5592-8 (1999).

    Google Scholar 

  27. Yamaoka A, Kuwabara I, Frigeri LG, Liu FT, A human lectin, galectin-3 (epsilon bp/Mac-2), stimulates superoxide production by neutrophils, J Immunol 154, 3479-87 (1995).

    Google Scholar 

  28. Probstmeier R, Montag D, Schachner M, Galectin-3, a betagalactoside-binding animal lectin, binds to neural recognition molecules, J Neurochem 64, 2465-72 (1995).

    Google Scholar 

  29. Bresalier RS, Byrd JC, Wang L, Raz A, Colon cancer mucin:Anew ligand for the beta-galactoside-binding protein galectin-3, Cancer Res 56, 4354-7 (1996).

    Google Scholar 

  30. Inohara H, Raz A, Functional evidence that cell surface galectin-3 mediates homotypic cell adhesion, Cancer Res 55, 3267-71 (1995).

    Google Scholar 

  31. Ohannesian DW, Lotan D, Thomas P, Jessup JM, Fukuda M, Gabius HJ, Lotan R, Carcinoembryonic antigen and other glycoconjugates act as ligands for galectin-3 in human colon carcinoma cells, Cancer Res 55, 2191-9 (1995).

    Google Scholar 

  32. Sarafian V, Jadot M, Foidart JM, Letesson JJ, Van den Brule F, Castronovo V, Wattiaux R, Coninck SW, Expression of Lamp-1 and Lamp-2 and their interactions with galectin-3 in human tumor cells, Int J Cancer 75, 105-11 (1998).

    Google Scholar 

  33. Springer T, Galfre G, Secher DS, Milstein C, Mac-1: A macrophage differentiation antigen identified by monoclonal antibody, Eur J Immunol 9, 301-6 (1979).

    Google Scholar 

  34. Ochieng J, Leite-Browning ML, Warfield P, Regulation of cellular adhesion to extracellular matrix proteins by galectin-3, Biochem Biophys Res Commun 246, 788-91 (1998).

    Google Scholar 

  35. Foddy L, Hughes RC, Interactions of lectins with normal, swainsonine-treated and ricin-resistant baby hamster kidney BHK cells, Carbohydr Res 151, 293-304 (1986).

    Google Scholar 

  36. Winyard PJ, Bao Q, Hughes RC, Woolf AS, Epithelial galectin-3 during human nephrogenesis and childhood cystic diseases, J Am Soc Nephrol 8, 1647-57 (1997).

    Google Scholar 

  37. Bullock SL, Johnson TM, Bao Q, Hughes RC, Winyard PJ, Woolf AS, Galectin-3 modulates ureteric bud branching in organ culture of the developing mouse kidney, J Am Soc Nephrol 12, 515-23 (2001).

    Google Scholar 

  38. Howlett AR, Bissell MJ, The influence of tissue microenvironment (stroma and extracellular matrix) on the development and function of mammary epithelium, Epithelial Cell Biol 2, 79-89 (1993).

    Google Scholar 

  39. Hikita C, Vijayakumar S, Takito J, Erdjument-Bromage H, Tempst P, Al-Awqati Q, Induction of terminal differentiation in epithelial cells requires polymerization of hensin by galectin 3, J Cell Biol 151, 1235-46 (2000).

    Google Scholar 

  40. Bao Q, Hughes RC, Galectin-3 and polarized growth within collagen gels of wild-type and ricin-resistant MDCK renal epithelial cells, Glycobiology 9, 489-95 (1999).

    Google Scholar 

  41. Nangia-Makker P, Honjo Y, Sarvis R, Akahani S, Hogan V, Pienta KJ, Raz A, Galectin-3 induces endothelial cell morphogenesis and angiogenesis, Am J Pathol 156, 899-909 (2000).

    Google Scholar 

  42. Lee VH, Lee AB, Phillips EB, Roberts JK, Weitlauf HM, Spatiotemporal pattern for expression of galectin-3 in the murine uteroplacental complex: Evidence for differential regulation, Biol Reprod 58, 1277-82 (1998).

    Google Scholar 

  43. Colnot C, Ripoche MA, Fowlis D, Cannon V, Cooper DN, Poirier F, The role of galectins in mouse development, Trends in Glycoscience and Glycotechnology 9, 31-40 (1997).

    Google Scholar 

  44. Sato S, Burdett I, Hughes RC, Secretion of the baby hamster kidney 30-kDa galactose-binding lectin from polarized and nonpolarized cells: A pathway independent of the endoplasmic reticulum-Golgi complex, Exp Cell Res 207, 8-18 (1993).

    Google Scholar 

  45. Hughes RC, Secretion of the galectin family of mammalian carbohydrate-binding proteins, Biochim Biophys Acta 1473, 172- 85 (1999).

    Google Scholar 

  46. Menon RP, Hughes RC, Determinants in the N-terminal domains of galectin-3 for secretion by a novel pathway circumventing the endoplasmic reticulum-Golgi complex, Eur J Biochem 264, 569- 76 (1999).

    Google Scholar 

  47. Orlandi PA, Fishman PH, Orlandi PA, Fishman PH, Filipindependent inhibition of cholera toxin: Evidence for toxin internalization and activation through caveolae-like domains, J Cell Biol 141, 905-15 (1998).

    Google Scholar 

  48. Furtak V, Hatcher F, Ochieng J, Galectin-3 mediates the endocytosis of beta-1 integrins by breast carcinoma cells, Biochem Biophys Res Commun 289, 845-50 (2001).

    Google Scholar 

  49. Zhu WQ, Ochieng J, Rapid release of intracellular galectin-3 from breast carcinoma cells by fetuin, Cancer Res 61, 1869-73 (2001).

    Google Scholar 

  50. Pugliese G, Pricci F, Iacobini C, Leto G, Amadio L, Barsotti P, Frigeri L, Hsu DK, Vlassara H, Liu FT, Di Mario U, Accelerated diabetic glomerulopathy in galectin-3/AGE receptor 3 knockout mice, FASEB J 15, 2471-9 (2001).

    Google Scholar 

  51. Christensen EI, Birn H, Megalin and cubilin: Multifunctional endocytic receptors, Nat Rev Mol Cell Biol 3, 256-66 (2002).

    Google Scholar 

  52. Crider-Pirkle S, Billingsley P, Faust C, Hardy DM, Lee V, Weitlauf H, Cubilin, a binding partner for galectin-3 in the murine uteroplacental complex, J Biol Chem 277, 15904-12 (2002).

    Google Scholar 

  53. Siever DA, Erickson HP, Extracellular annexin II, Int J Biochem Cell Biol 29, 1219-23 (1997).

    Google Scholar 

  54. Pepper C, Thomas A, Tucker H, Hoy T, Bentley P, Flowcytometric assessment of three different methods for the measurement of in vitro apoptosis, Leuk Res 22, 439-44 (1998).

    Google Scholar 

  55. Hynes RO, Schwarzbauer JE, Tamkun JW, Isolation and analysis of cDNA and genomic clones of fibronectin and its receptor, Methods Enzymol 144, 447-63 (1987).

    Google Scholar 

  56. Hughes RC, Galectins as modulators of cell adhesion, Biochimie 83, 667-76 (2001).

    Google Scholar 

  57. Dong S, Hughes RC, Macrophage surface glycoproteins binding to galectin-3 (Mac-2-antigen), Glycoconj J 14, 267-74 (1997).

    Google Scholar 

  58. Veiga SS, Chammas R, Cella N, Brentani RR, Glycosylation of beta-1 integrins in B16-F10 mouse melanoma cells as determinant of differential binding and acquisition of biological activity, Int J Cancer 61, 420-4 (1995).

    Google Scholar 

  59. Jasiulionis MG, Chammas R, Ventura AM, Travassos LR, Brentani RR, alpha6beta1-Integrin, a major cell surface carrier of beta1-6-branched oligosaccharides, mediates migration of EJras-transformed fibroblasts on laminin-1 independently of its glycosylation state, Cancer Res 56, 1682-9 (1996).

    Google Scholar 

  60. Dennis JW, Granovsky M, Warren CE, Glycoprotein glycosylation and cancer progression, Biochim Biophys Acta 1473, 21-34 (1999).

    Google Scholar 

  61. Andre S, Kojima S, Yamazaki N, Fink C, Kaltner H, Kayser K, Gabius HJ, Galectins-1 and-3 and their ligands in tumor biology. Non-uniform properties in cell-surface presentation and modulation of adhesion to matrix glycoproteins for various tumor cell lines, in biodistribution of free and liposome-bound galectins and in their expression by breast and colorectal carcinomas with/without metastatic propensity, J Cancer Res Clin Oncol 125, 461-74 (1999).

    Google Scholar 

  62. Levy Y, Arbel-Goren R, Hadari YR, Eshhar S, Ronen D, Elhanany E, Geiger B, Zick Y, Galectin-8 functions as a matricellular modulator of cell adhesion J Biol Chem 276, 31285-95 (2001).

    Google Scholar 

  63. Warfield PR, Makker PN, Raz A, Ochieng J, Adhesion of human breast carcinoma to extracellular matrix proteins is modulated by galectin-3, Invasion Metastasis 17, 101-12 (1997).

    Google Scholar 

  64. Matarrese P, Fusco O, Tinari N, Natoli C, Liu FT, Semeraro ML, Malorni W, Iacobelli S, Galectin-3 overexpression protects from apoptosis by improving cell adhesion properties, Int J Cancer 85, 545-54 (2000).

    Google Scholar 

  65. Honjo Y, Nangia-Makker P, Inohara H, Raz A, Down-regulation of galectin-3 suppresses tumorigenicity of human breast carcinoma cells, Clin Cancer Res 7, 661-8 (2001).

    Google Scholar 

  66. Sasaki S, Bao Q, Hughes RC, Galectin-3 modulates rat mesangial cell proliferation and matrix synthesis during experimental glomerulonephritis induced by anti-Thy1.1 antibodies, J Pathol 187, 481-9 (1999).

    Google Scholar 

  67. Sato S, Hughes RC, Binding specificity of a baby hamster kidney lectin for H type I and II chains, polylactosamine glycans, and appropriately glycosylated forms of laminin and fibronectin, J Biol Chem 267, 6983-90 (1992).

    Google Scholar 

  68. Massa SM, Cooper DN, Leffler H, Barondes SH, L-29, an endogenous lectin, binds to glycoconjugate ligands with positive cooperativity, Biochemistry 32, 260-7 (1993).

    Google Scholar 

  69. Ochieng J, Warfield P, Green-Jarvis B, Fentie I, Galectin-3 regulates the adhesive interaction between breast carcinoma cells and elastin, J Cell Biochem 75, 505-14 (1999).

    Google Scholar 

  70. Ochieng J, Warfield P, Galectin-3 binding potentials of mouse tumor EHS and human placental laminins, Biochem Biophys Res Commun 217, 402-6 (1995).

    Google Scholar 

  71. Pesheva P, Kuklinski S, Schmitz B, Probstmeier R, Galectin-3 promotes neural cell adhesion and neurite growth, J Neurosci Res 54, 639-54 (1998).

    Google Scholar 

  72. Moody TN, Ochieng J, Villalta F, Novel mechanism that Trypanosoma cruzi uses to adhere to the extracellular matrix mediated by human galectin-3, FEBS Lett 470, 305-8 (2000).

    Google Scholar 

  73. Mey A, Leffler H, Hmama Z, Normier G, Revillard JP, The animal lectin galectin-3 interacts with bacterial lipopolysaccharides via two independent sites, J Immunol 156, 1572-7 (1996).

    Google Scholar 

  74. Mandrell RE, Apicella MA, Lindstedt R, Leffler H, Possible interaction between animal lectins and bacterial carbohydrates, Methods Enzymol 236, 231-54 (1994).

    Google Scholar 

  75. Gupta SK, Masinick S, Garrett M, Hazlett LD, Pseudomonas aeruginosa lipopolysaccharide binds galectin-3 and other human corneal epithelial proteins, Infect Immun 65, 2747-53 (1997).

    Google Scholar 

  76. Wang JL, Werner EA, Laing JG, Patterson RJ, Nuclear and cytoplasmic localization of a lectin-ribonucleoprotein complex, Biochem Soc Trans 20, 269-74 (1992).

    Google Scholar 

  77. Kuwabara I, Liu FT, Galectin-3 promotes adhesion of human neutrophils to laminin, J Immunol 156, 3939-44 (1996).

    Google Scholar 

  78. Sasaki T, Brakebusch C, Engel J, Timpl R, Mac-2 binding protein is a cell-adhesive protein of the extracellular matrix which self-assembles into ring-like structures and binds beta1 integrins, collagens and fibronectin, EMBO J 17, 1606-13 (1998).

    Google Scholar 

  79. Inohara H, Akahani S, Koths K, Raz A, Interactions between galectin-3 and Mac-2-binding protein mediate cell-cell adhesion, Cancer Res 56, 4530-4 (1996).

    Google Scholar 

  80. Gonen T, Grey AC, Jacobs MD, Donaldson PJ, Kistler J, MP20, the second most abundant lens membrane protein and member of the tetraspanin superfamily, joins the list of ligands of galectin-3, BMC Cell Biol 2, 17 (2001).

    Google Scholar 

  81. Pricci F, Leto G, Amadio L, Iacobini C, Romeo G, Cordone S, Gradini R, Barsotti P, Liu FT, Di Mario U, Pugliese G, Role of galectin-3 as a receptor for advanced glycosylation end products, Kidney Int Suppl 77, S31-9 (2000).

    Google Scholar 

  82. Joo HG, Goedegebuure PS, Sadanaga N, Nagoshi M, von Bernstorff W, Eberlein TJ, Expression and function of galectin-3, a betagalactoside-binding protein in activated T lymphocytes, Leukoc Biol 69, 555-64 (2001).

    Google Scholar 

  83. Frigeri LG, Zuberi RI, Liu FT, Epsilon BP, A beta-galactosidebinding animal lectin, recognizes IgE receptor (Fc epsilon RI) and activates mast cells, Biochemistry 32, 7644-9 (1993).

    Google Scholar 

  84. Leffler H, Barondes SH, Specificity of binding of three soluble rat lung lectins to substituted and unsubstituted mammalian bgalactosides, J Biol Chem 261, 10119-26 (1986).

    Google Scholar 

  85. Sachiko S, Hughes RC, Binding specificity of a baby hamster kidney lectin for H type 1 and II chains, polylactosamine glycans, and appropriately glycosylated forms of laminin and fibronectin, J Biol Chem 267, 6983-90 (1992)

    Google Scholar 

  86. Knibbs RN, Agrwal N, Wang JL, Goldstein IJ, Carbohydratebinding protein 35, analysis of the interaction of the recombinant polypeptide with saccharides, J Biol Chem 268, 14940-7 (1993).

    Google Scholar 

  87. Braccia A, Villani M, Immerdal L, Niels-Christiansen LL, Nystrom BT, Hansen GH, and Danielson EM, Microvillar membrane microdomains exist at physiological temperature. Role of galectin-4 as lipid raft stabilizer revealed by superrafts, J Biol Chem 278, 15679-84 (2003).

    Google Scholar 

  88. Bickel PE, Lipid rafts and insulin signaling, Am J Physiol Endocrinol Metab 282, E1-E10 (2002).

    Google Scholar 

  89. Magee T, Pirinen N, Adler J, Pagakis SN, Parmryd I, Lipid rafts: Cell surface platforms for T cell signaling, Biol Res 35, 127-31 (2002).

    Google Scholar 

  90. Harris TJ, Siu CH, Reciprocal raft-receptor interactions and the assembly of adhesion complexes, Bioessays 24, 996-1003 (2002).

    Google Scholar 

  91. Demetriou M, Granovsky M, Quaggin S, Dennis JW, Negative regulation of T-cell activation and autoimmunity by Mgat5 Nglycosylation, Nature 409, 733-9 (2001).

    Google Scholar 

  92. Dennis JW, Pawling J, Cheung P, Partridge E, Demetriou M, Udp-N-acetylglucosamine: A-6-D-mannoside b1, 6Nacetylglucosaminyltransferase V (Mgat5) deficient mice, Biochimica et Biophysica Acta 1573, 414-22 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josiah Ochieng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ochieng, J., Furtak, V. & Lukyanov, P. Extracellular functions of galectin-3. Glycoconj J 19, 527–535 (2002). https://doi.org/10.1023/B:GLYC.0000014082.99675.2f

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GLYC.0000014082.99675.2f

Navigation