Skip to main content
Log in

Molecular mechanism for cancer-associated induction of sialyl Lewis X and sialyl Lewis A expression—The Warburg effect revisited

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Cell adhesion mediated by selectins and their carbohydrate ligands, sialyl Lewis X and sialyl Lewis A, figures heavily in cancer metastasis. Expression of these carbohydrate determinants is markedly enhanced in cancer cells, but the molecular mechanism that leads to cancer-associated expression of sialyl Lewis X/A has not been well understood. Results of recent studies indicated involvement of two principal mechanisms in the accelerated expression of sialyl Lewis X/A in cancers; ‘incomplete synthesis’ and ‘neosynthesis.’ As to ‘incomplete synthesis,’ we have recently found further modified forms of sialyl Lewis X and sialyl Lewis A in non-malignant colonic epithelium, which have additional 6-sulfation or 2 → 6 sialylation. The impairment of GlcNAc 6-sulfation and 2 → 6 sialylation upon malignant transformation leads to accumulation of sialyl Lewis X/A in colon cancer cells. Epigenetic changes such as DNA methylation and/or histone deacetylation are suggested to lie behind such incomplete synthesis. As to the mechanism called ‘neosynthesis,’ recent studies have indicated that cancer-associated alterations in the sugar transportation and intermediate carbohydrate metabolism play important roles. Cancer cells are known to exhibit a metabolic shift from oxidative to elevated anaerobic glycolysis (Warburg effect), which is correlated with the increased gene expression of sugar transporters and glycolytic enzymes induced by common cancer-specific genetic alterations. The increased sialyl Lewis X/A expression in cancer is a link in the chains of these events because our recent results indicated that these events accompany transcriptional induction of a set of genes closely related to its expression. Published in 2004.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hakomori S, Tumor malignancy defined by aberrant glycosylation and sphingo(glyco)lipid metabolism, Cancer Res 56, 5309-18 (1996).

    PubMed  CAS  Google Scholar 

  2. Kannagi R, Carbohydrate-mediated cell adhesion involved in hematogenous metastasis of cancer, Glycoconjugate J 14, 577- 84 (1997).

    Article  CAS  Google Scholar 

  3. Takada A, Ohmori K, Yoneda T, Tsuyuoka K, Hasegawa A, Kiso M, Kannagi R,Contribution of carbohydrate antigens sialyl Lewis A and sialyl Lewis X to adhesion of human cancer cells to vascular endothelium, Cancer Res 53, 354-61 (1993).

    PubMed  CAS  Google Scholar 

  4. Lowe JB, Stoolman LM, Nair RP, Larsen RD, Berhend TL, Marks RM, ELAM-1-dependent cell adhesion to vascular endothelium determined by a transfected human fucosyltransferase cDNA, Cell 63, 475-84 (1990).

    Article  PubMed  CAS  Google Scholar 

  5. Gillespie W, Kelm S, Paulson JC, Cloning and expression of the Gal-?-1,3GalNAc ?-2,3-sialyltransferase, J Biol Chem 267, 21004-10 (1992).

    PubMed  CAS  Google Scholar 

  6. Wen DX, Livingston BD, Medzihradszky KF, Kelm S, Burlingame AL, Paulson JC, Primary structure of Gal-?-1,3(4)GlcNAc ?-2,3-sialyltransferase determined by mass spectrometry sequence analysis and molecular cloning. Evidence for a protein motif in the sialyltransferase gene family, J Biol Chem 267, 21011-9 (1992).

    PubMed  CAS  Google Scholar 

  7. Basu M, Basu S, Stoffyn A, Stoffyn P, Biosynthesis in vitro of sialyl(?2-3) neolactotetraosylceramide by a sialyltransferase from embryonic chicken brain, J Biol Chem 257, 12765-9 (1982).

    PubMed  CAS  Google Scholar 

  8. Basu M, Hawes JW, Li Z, Ghosh S, Khan FA, Zhang BJ, Basu S, Biosynthesis in vitro of SA-Lex and SA-diLex by ?1-3 fucosyltransferases from colon carcinoma cells and embryonic brain tissues, Glycobiology 1, 527-35 (1991).

    PubMed  CAS  Google Scholar 

  9. Basu M, Basu SS, Li Z, Tang H, Basu S, Biosynthesis and regulation of Lex and SA-Lex glycolipids in metastatic human colon carcinoma cells, Indian J Biochem Biophys 30, 324-32 (1993).

    PubMed  CAS  Google Scholar 

  10. Basu SS, Basu M, Li Z, Basu S, Characterization of two glycolipid: ? 2-3sialyltransferases, SAT-3 (CMP-NeuAc:nLcOse4Cer ? 2-3sialyltransferase) and SAT-4 (CMP-NeuAc:GgOse4Cer ? 2-3sialyltransferase), from human colon carcinoma (Colo 205) cell line, Biochemistry 35, 5166-74 (1996).

    Article  PubMed  CAS  Google Scholar 

  11. Holmes EH, Xu Z, Sherwood AL, Macher BA, Structure-function analysis of human ? 1?3fucosyltransferases. A GDP-fucoseprotected, N-ethylmaleimide-sensitive site in FucT-III and FucTV corresponds to Ser178 in FucT-IV, J Biol Chem 270, 8145-51 (1995).

    Article  PubMed  CAS  Google Scholar 

  12. Natsuka S, Gersten KM, Zenita K, Kannagi R, Lowe JB, Molecular cloning of a cDNA encoding a novel human leukocyte ?-1,3-fucosyltransferase capable of synthesizing the sialyl Lewis x determinant, J Biol Chem 269, 16789-94 (1994).

    PubMed  CAS  Google Scholar 

  13. Uchimura K, Muramatsu H, Kadomatsu K, Fan QW, Kurosawa N, Mitsuoka C, Kannagi R, Habuchi O, Muramatsu T, Molecular cloning and characterization of an N-acetylglucosamine-6-Osulfotransferase, J Biol Chem 273, 22577-83 (1998).

    Article  PubMed  CAS  Google Scholar 

  14. Bistrup A, Bhakta S, Lee JK, Belov YY, Gunn MD, Zuo F-R, Huang C-C, Kannagi R, Rosen SD, Hemmerich S, Sulfotransferases of two specificities function in the reconstitution of highendothelial-cell ligands for L-selectin, J Cell Biol 145, 899-910 (1999).

    Article  PubMed  CAS  Google Scholar 

  15. Hakomori S, Tumor-associated glycolipid antigens, their metabolism and organization, Chem Phys Lipids 42, 209-33 (1986).

    Article  PubMed  CAS  Google Scholar 

  16. Hakomori S, Tumor-associated glycolipid antigens defined by monoclonal antibodies, Bull Cancer 70, 118-26 (1983).

    PubMed  CAS  Google Scholar 

  17. Hakomori S, Kannagi R, Glycosphingolipids as tumor-associated and differentiation markers, J Natl Cancer Inst 71, 231-51 (1983).

    PubMed  CAS  Google Scholar 

  18. Izawa M, Kumamoto K, Mitsuoka C, Kanamori A, Ohmori K, Ishida H, Nakamura S, Kurata-Miura K, Sasaki K, Nishi T, Kannagi R, Expression of sialyl 6-sulfo Lewis x is inversely correlated with conventional sialyl Lewis x expression in human colorectal cancer, Cancer Res 60, 1410-16 (2000).

    PubMed  CAS  Google Scholar 

  19. Itai S, Arii S, Tobe R, Kitahara A, Kim Y-C, Yamabe H, Ohtsuki H, Kirihata Y, Shigeta K, Kannagi R, Significance of 2-3 and 2-6 sialylation of Lewis A antigen in pancreas cancer, Cancer 61, 775-87 (1988).

    Article  PubMed  CAS  Google Scholar 

  20. Itai S, Nishikata J, Yoneda T, Ohmori K, Tsunekawa S, Hiraiwa N, Yamabe H, Arii S, Tobe T, Kannagi R, Tissue distribution of sialyl 2-3 and 2-6 Lewis a antigens and the significance of serum 2-3/2-6 sialyl Lewis a antigen ratio for the differential diagnosis of malignant and benign disorders of the digestive tract, Cancer 67, 1576-87 (1991).

    Article  PubMed  CAS  Google Scholar 

  21. Mitsuoka C, Sawada-Kasugai M, Ando-Furui K, Izawa M, Nakanishi H, Nakamura S, Ishida H, Kiso M, Kannagi R, Identification of a major carbohydrate capping group of the L-selectin ligand on high endothelial venules in human lymph nodes as 6-sulfo sialyl Lewis x, J Biol Chem 273, 11225-33 (1998).

    Article  PubMed  CAS  Google Scholar 

  22. Kimura N, Mitsuoka C, Kanamori A, Hiraiwa N, Uchimura K, Muramatsu T, Tamatani T, Kansas GS, Kannagi R, Reconstitution of functional L-selectin ligands on a cultured human endothelial cell line by co-transfection of ?1?3 fucosyltransferase VII and newly cloned GlcNAc?: 6-sulfotransferase cDNA, Proc Natl Acad Sci USA 96, 4530-5 (1999).

    Article  PubMed  CAS  Google Scholar 

  23. Hemmerich S, Rosen SD, Carbohydrate sulfotransferases in lymphocyte homing, Glycobiology 10, 849-56 (2000).

    Article  PubMed  CAS  Google Scholar 

  24. Lee JK, Bhakta S, Rosen SD, Hemmerich S, Cloning and characterization of a mammalian N-Acetylglucosamine-6-sulfotransferase that is highly restricted to intestinal tissue, Biochem Biophys Res Commun 263, 543-9 (1999).

    Article  PubMed  CAS  Google Scholar 

  25. Uchimura K, El-Fasakhany FM, Hori M, Hemmerich S, Blink SE, Kansas GS, Kanamori A, Kumamoto K, Kannagi R, Muramatsu T, Specificities of N-acetylglucosamine-6-O-sulfotransferases in relation to L-selectin ligand synthesis and tumor-associated enzyme expression, J Biol Chem 277, 3979-84 (2002).

    Article  PubMed  CAS  Google Scholar 

  26. Seko A, Sumiya J, Yonezawa S, Nagata K, Yamashita K, Biochemical differences in two types of N-acetylglucosamine:?6 sulfotransferase between human colonic adenocarcinomas and the adjacent normal mucosa: Specific expression of a GlcNAc:?6 sulfotransferase in mucinous adenocarcinoma, Glycobiology 10, 919-29 (2000).

    Article  PubMed  CAS  Google Scholar 

  27. Antalis TM, Reeder JA, Gotley DC, Byeon MK, Walsh MD, Henderson KW, Papas TS, Schweinfest CW, Down-regulation of the down-regulated in adenoma (DRA) gene correlates with colon tumor progression, Clin Cancer Res 4, 1857-63 (1998).

    PubMed  CAS  Google Scholar 

  28. Tsuchida A, Okajima T, Furukawa Ke, Ando T, Ishida H, Yoshida A, Nakamura Y, Kannagi R, Kiso M, Furukawa K, Synthesis of disialyl Lewis a structure in colon cancer cell lines by a sialyltransferase ST6GalNAc VI responsible for the synthesis of ?-series gangliosides, J Biol Chem 278, 22787-94 (2003).

    Article  PubMed  CAS  Google Scholar 

  29. Miyazaki K, Ohmori K, Izawa M, Koike T, Kumamoto K, Furukawa K, Ando T, Kiso M, Yamaji T, Hashimoto Y, Suzuki A, Yoshida A, Takeuchi M, Kannagi R, Loss of disialyl Lewisa, the ligand for lymphocyte inhibitory receptor Siglec-7, associated with increased sialyl Lewis a expression on human colon cancers, Cancer Res in press, 2004.

  30. Magnani JL, Nilsson B, Brockhaus M, Zopf D, Steplewski Z, Koprowski H, Ginsburg V,Amonoclonal antibody-defined antigen associated with gastrointestinal cancer is a ganglioside containing sialylated lacto-N-fucopentaose II, J Biol Chem 257, 14365-9 (1982).

    PubMed  CAS  Google Scholar 

  31. Orntoft TF, Vestergaard EM, Holmes E, Jakobsen JS, Grunnet N, Mortensen M, Johnson P, Bross P, Gregersen N, Skorstengaard K, Jensen UB, Bolund L, Wolf H, Influence of Lewis ?1-3/4-Lfucosyltransferase (FUT3) gene mutations on enzyme activity, erythrocyte phenotyping, and circulating tumor marker sialyl-Lewis a levels, J Biol Chem 271, 32260-8 (1996).

    Article  PubMed  CAS  Google Scholar 

  32. Yamachika T, Nakanishi H, Inada K, Kitoh K, Kato T, Irimura T, Tatematsu M, Reciprocal control of colon-specific sulfomucin and sialosyl-Tn antigen expression in human colorectal neoplasia, Virchows Arch Int J Pathol 431, 25-30 (1997).

    Article  CAS  Google Scholar 

  33. Honke K, Tsuda M, Koyota S, Wada Y, Iida-Tanaka N, Ishizuka I, Nakayama J, Taniguchi N, Molecular Cloning and Characterization of A Human ?-Gal 3?-Sulfotransferase Which Acts on Both Type 1 and Type 2 (Gal?1,3/1,4GlcNAc-R) Oligosaccharides, J Biol Chem 276, 267-74 (2001).

    Article  PubMed  CAS  Google Scholar 

  34. Seko A, Nagata K, Yonezawa S, Yamashita K, Down-regulation of Gal3-O-sulfotransferase-2 (Gal3ST-2) expression in human colonic non-mucinous adenocarcinoma, Jpn J Cancer Res 93, 507-15 (2002).

    PubMed  CAS  Google Scholar 

  35. Ikeda N, Eguchi H, Nishihara S, Narimatsu H, Kannagi R, Irimura T, Ohta M, Matsuda H, Taniguchi N, Honke K, A remodeling system of the 3?-sulfo Lewis a and 3?-sulfo Lewis x epitopes, J Biol Chem 276, 38588-94 (2001).

    Article  PubMed  CAS  Google Scholar 

  36. Kannagi R, Regulatory roles of carbohydrate ligands for selectins in homing of lymphocytes, Curr Opin Struct Biol 12, 599-608 (2002).

    Article  PubMed  CAS  Google Scholar 

  37. Camerini V, Panwala C, Kronenberg M, Regional specialization of the mucosal immune system. Intraepithelial lymphocytes of the large intestine have a different phenotype and function than those of the small intestine, J Immunol 151, 1765-76 (1993).

    PubMed  CAS  Google Scholar 

  38. Ito A, Handa K, Withers DA, Satoh M, Hakomori S, Binding specificity of siglec7 to disialogangliosides of renal cell carcinoma: Possible role of disialogangliosides in tumor progression, FEBS Lett 504, 82-6 (2001).

    Article  PubMed  CAS  Google Scholar 

  39. Falco M, Biassoni R, Bottino C, Vitale M, Sivori S, Augugliaro R, Moretta L, Moretta A, Identification and molecular cloning of p75/AIRM1, a novel member of the sialoadhesin family that functions as an inhibitory receptor in human natural killer cells, J Exp Med 190, 793-802 (1999).

    Article  PubMed  CAS  Google Scholar 

  40. Karlsson NG, Johansson ME, Asker N, Karlsson H, Gendler SJ, Carlstedt I, Hansson GC, Molecular characterization of the large heavily glycosylated domain glycopeptide from the rat small intestinal Muc2 mucin, Glycoconjugate J 13, 823-31 (1996).

    Article  CAS  Google Scholar 

  41. Podolsky DK, Oligosaccharide structures of human colonic mucin, J Biol Chem 260, 8262-71 (1985).

    PubMed  CAS  Google Scholar 

  42. Tytgat KM, Buller HA, Opdam FJ, Kim YS, Einerhand AW, Dekker J, Biosynthesis of human colonic mucin: Muc2 is the prominent secretory mucin, Gastroenterology 107, 1352-63 (1994).

    PubMed  CAS  Google Scholar 

  43. Velcich A, Yang W, Heyer J, Fragale A, Nicholas C, Viani S, Kucherlapati R, Lipkin M, Yang K, Augenlicht L, Colorectal cancer in mice genetically deficient in the mucin Muc2, Science 295, 1726-9 (2002).

    Article  PubMed  CAS  Google Scholar 

  44. Iwamoto S, Withers DA, Handa K, Hakomori S, Deletion of A-antigen in a human cancer cell line is associated with reduced promoter activity of CBF/NF-Y binding region, and possibly with enhanced DNA methylation of A transferase promoter, Glycoconjugate J 16, 659-66 (1999).

    Article  CAS  Google Scholar 

  45. Kominato Y, Hata Y, Takizawa H, Tsuchiya T, Tsukada J, Yamamoto F, Expression of human histo-blood group ABO genes is dependent uponDNAmethylation of the promoter region, J Biol Chem 274, 37240-50 (1999).

    Article  PubMed  CAS  Google Scholar 

  46. Ito H, Hiraiwa N, Sawada-Kasugai M, Akamatsu S, Tachikawa T, Kasai Y, Akiyama S, Ito K, Takagi H, Kannagi R, Altered mRNA expression of specific molecular species of fucosyl-and sialyltransferases in human colorectal cancer tissues, Int J Cancer 71, 556-64 (1997).

    Article  PubMed  CAS  Google Scholar 

  47. Kudo T, Ikehara Y, Togayachi A, Morozumi K, Watanabe M, Nakamura M, Nishihara S, Narimatsu H, Up-regulation of a set of glycosyltransferase genes in human colorectal cancer, Lab Invest 78, 797-811 (1998).

    PubMed  CAS  Google Scholar 

  48. Petretti T, Kemmner W, Schulze B, Schlag PM, Altered mRNA expression of glycosyltransferases in human colorectal carcinomas and liver metastases, Gut 46, 359-66 (2000).

    Article  PubMed  CAS  Google Scholar 

  49. Dohi T, Hashiguchi M, Yamamoto S, Morita H, Oshima M, Fucosyltransferase-producing sialyl Lea and sialyl Lex carbohydrate antigen in benign and malignant gastrointestinal mucosa, Cancer 73, 1552-61 (1994).

    Article  PubMed  CAS  Google Scholar 

  50. Akamatsu S, Yazawa S, Tachikawa T, Furuta T, Okaichi Y, Nakamura J, Asao T, Nagamachi Y, ?2 ? 3 Sialyltransferase associated with the synthesis ofCA 19-9 in colorectal tumors, Cancer 77(Suppl), 1694-700 (1996).

    PubMed  CAS  Google Scholar 

  51. Weston BW, Hiller KM, Mayben JP, Manousos GA, Bendt KM, Liu R, Cusack JC, Jr., Expression of human ?(1,3)fucosyltransferase antisense sequences inhibits selectinmediated adhesion and liver metastasis of colon carcinoma cells, Cancer Res 59, 2127-35 (1999).

    PubMed  CAS  Google Scholar 

  52. Hiller KM, Mayben JP, Bendt KM, Manousos GA, Senger K, Cameron HS, Weston BW, Transfection of ?(1,3)fucosyltransferase antisense sequences impairs the proliferative and tumorigenic ability of human colon carcinoma cells, Mol Carcinog 27, 280-8 (2000).

    Article  PubMed  CAS  Google Scholar 

  53. Kannagi R, Transcriptional regulation of expression of carbohydrate ligands for cell adhesion molecules in the selectin family, Adv Exp Med Biol 491, 267-78 (2001).

    PubMed  CAS  Google Scholar 

  54. Withers DA, Hakomori SI, Human ?(1,3)-fucosyltransferase IV (FUTIV) gene expression is regulated by elk-1 in the U937 cell line, J Biol Chem 275, 40588-93 (2000).

    Article  PubMed  CAS  Google Scholar 

  55. Furukawa Y, Tara M, Ohmori K, Kannagi R, Variant type of sialyl Lewis X antigen expressed on adult T cell leukemia cells is associated with skin involvement, Cancer Res 54, 6533-8 (1994).

    PubMed  CAS  Google Scholar 

  56. Hiraiwa N, Yabuta T, Yoritomi K, Hiraiwa M, Tanaka Y, Suzuki T, Yoshida M, Kannagi R, Transactivation of the fucosyltransferase VII gene by human T-cell leukemia virus type 1 tax through a variant cAMP-responsive element, Blood 101, 3615-21 (2003).

    Article  PubMed  CAS  Google Scholar 

  57. Ogawa J, Inoue H, Koide S, Expression of ?-1,3-fucosyltransferase type IV and VII genes is related to poor prognosis in lung cancer, Cancer Res 56, 325-9 (1996).

    PubMed  CAS  Google Scholar 

  58. Martin-Satue M, Marrugat R, Cancelas JA, Blanco J, Enhanced expression of ?(1,3)fucosyltransferase genes correlates with Eselectin-mediated adhesion and metastatic potential of human lung adenocarcinoma cells, Cancer Res 58, 1544-50 (1998).

    PubMed  CAS  Google Scholar 

  59. Mas E, Pasqualini E, Caillol N, El Battari A, Crotte C, Lombardo D, Sadoulet MO,Fucosyltransferase activities in human pancreatic tissue: Comparative study between cancer tissues and established tumoral cell lines, Glycobiology 8, 605-13 (1998).

    Article  PubMed  CAS  Google Scholar 

  60. Martin-Satue M, de Castellarnau C, Blanco J, Overexpression of ?(1,3)-fucosyltransferase VII is sufficient for the acquisition of lung colonization phenotype in human lung adenocarcinoma HAL-24Luc cells, Br J Cancer 80, 1169-74 (1999).

    Article  PubMed  CAS  Google Scholar 

  61. Sherwood AL, Holmes EH, Analysis of the expression and enzymatic properties of ?1?3 fucosyltransferase from human lung carcinoma NCI-H69 and PC9 cells, Glycobiology 9, 637-43 (1999).

    Article  PubMed  CAS  Google Scholar 

  62. Friederichs J, Zeller Y, Hafezi-Moghadam A, Grone HJ, Ley K, Altevogt P, The CD24/P-selectin binding pathway initiates lung arrest of human A125 adenocarcinoma cells, Cancer Res 60, 6714-22 (2000).

    PubMed  CAS  Google Scholar 

  63. Liu F, Qi HL, Chen HL, Regulation of differentiation-and proliferation-inducers on Lewis antigens,?-fucosyltransferase and metastatic potential in hepatocarcinoma cells, Br J Cancer 84, 1556-63 (2001).

    Article  PubMed  CAS  Google Scholar 

  64. Liu F, Qi HL, Zhang Y, Zhang XY, Chen HL, Transfection of the c-erbB2/neu gene upregulates the expression of sialyl Lewis X, ?1,3-fucosyltransferase VII, and metastatic potential in a human hepatocarcinoma cell line, Eur J Biochem 268, 3501-12 (2001).

    Article  PubMed  CAS  Google Scholar 

  65. Maly P, Thall AD, Petryniak B, Rogers GE, Smith PL, Marks RM, Kelly RJ, Gersten KM, Cheng GY, Saunders TL, Camper SA, Camphausen RT, Sullivan FX, Isogai Y, Hindsgaul O, Von Andrian UH, Lowe JB, The ?(1,3)fucosyltransferase Fuc-T VII controls leukocyte trafficking through an essential role in L-, E-, and P-selectin ligand biosynthesis, Cell 86, 643-53 (1996).

    Article  PubMed  CAS  Google Scholar 

  66. Shinoda K, Tanahashi E, Fukunaga K, Ishida H, Kiso M, Detailed acceptor specificities of human ?1,3-fucosyltransferases, Fuc-TVII and Fuc-TVI, Glycoconjugate J 15, 969-74 (1998).

    Article  CAS  Google Scholar 

  67. Fukunaga K, Shinoda K, Ishida H, Kiso M, Systematic synthesis of sulfated sialyl-?-(2?3)-neolactotetraose derivatives and their acceptor specificity for an ?-(1?3)-fucosyltransferase (Fuc-TVII) involved in the biosynthesis of L-selectin ligand, Carbohydr Res 328, 85-94 (2000).

    Article  PubMed  CAS  Google Scholar 

  68. Huang MC, Laskowska A, Vestweber D, Wild MK, The ? (1,3)-fucosyltransferase Fuc-TIV, but not Fuc-TVII, generates sialyl Lewis X-like epitopes preferentially on glycolipids, J Biol Chem 277, 47786-95 (2002).

    Article  PubMed  CAS  Google Scholar 

  69. Grabenhorst E, Nimtz M, Costa J, Conradt HS, In vivo specificity of human ?1,3/4-fucosyltransferases III-VII in the biosynthesis of LewisX and Sialyl LewisX motifs on complex-type N-glycans. Coexpression studies from bhk-21 cells together with human ?-trace protein, J Biol Chem 273, 30985-94 (1998).

    Article  PubMed  CAS  Google Scholar 

  70. Yang JM, Byrd JC, Siddiki BB, Chung YS, Okuno M, Sowa M, Kim YS, Matta KL, Brockhausen I,Alterations of O-glycan biosynthesis in human colon cancer tissues, Glycobiology 4, 873-84 (1994).

    PubMed  CAS  Google Scholar 

  71. Basu M, Basu S, Biosynthesis in vitro of Ii core glycosphingolipids from neolactotetraosylceramide by ?1-3-and ?1-6-Nacetylglucosaminyltransferases from mouse T-lymphoma, J Biol Chem 259, 12557-62 (1984).

    PubMed  CAS  Google Scholar 

  72. Basu S, Basu M, Dastgheib S, Hawes JW, Biosynthesis and regulation of glycosphingolipids. In Comprehensive natural products chemistry, edited by Barton D, Nakanishi K, Meth-Cohen O, vol. 3, edited by Pinto BM (Pergamon Press, New York, 1999), pp. 107-28.

    Google Scholar 

  73. Shimodaira K, Nakayama J, Nakamura N, Hasebe O, Katsuyama T, Fukuda M, Carcinoma-associated expression of core 2 ?-1,6-N-acetylglucosaminyltransferase gene in human colorectal cancer: Role of O-glycans in tumor progression, Cancer Res 57, 5201-6 (1997).

    PubMed  CAS  Google Scholar 

  74. Seko A, Ohkura T, Kitamura H, Yonezawa S, Sato E, Yamashita K, Quantitative differences in GlcNAc:?1?3 and GlcNAc:?1?4 galactosyltransferase activities between human colonic adenocarcinomas and normal colonic mucosa, Cancer Res 56, 3468-73 (1996).

    PubMed  CAS  Google Scholar 

  75. Salvini R, Bardoni A, Valli M, Trinchera M, ?1,3-galactosyltransferase ?3Gal-T5 acts on the GlcNAc?1-3Gal?1-4GlcNAc?1-R sugar chains of carcinoembryonic antigen and other N-linked glycoproteins, and is down-regulated in colon adenocarcinomas, J Biol Chem 276, 3564-73 (2001).

    Article  PubMed  CAS  Google Scholar 

  76. Kumamoto K, Goto Y, Sekikawa K, Takenoshita S, Ishida N, Kawakita M, Kannagi R, Increased expression of UDPgalactose transporter mRNA in human colon cancer tissues and its implication in synthesis of Thomsen-Friedenreich antigen and sialyl Lewis A/X determinants, Cancer Res 61, 4620-7 (2001).

    PubMed  CAS  Google Scholar 

  77. Kalckar HM, Galactose metabolism and cell "sociology', Science 150, 305-13 (1965).

    PubMed  CAS  Google Scholar 

  78. Warburg O, On the origin of cancer cells, Science 123, 309-14 (1956).

    PubMed  CAS  Google Scholar 

  79. Hatanaka M, Hanafusa H, Analysis of a functional change in membrane in the process of cell transformation by Rous sarcoma virus; alteration in the characteristics of sugar transport, Virology 41, 647-52 (1970).

    Article  PubMed  CAS  Google Scholar 

  80. Hatanaka M, Sugar effects on murine sarcoma virus transformation, Proc Natl Acad Sci USA 70, 1364-7 (1973).

    Article  PubMed  CAS  Google Scholar 

  81. Haber RS, Rathan A, Weiser KR, Pritsker A, Itzkowitz SH, Bodian C, Slater G, Weiss A, Burstein DE, GLUT1 glucose transporter expression in colorectal carcinoma: A marker for poor prognosis, Cancer 83, 34-40 (1998).

    Article  PubMed  CAS  Google Scholar 

  82. Zhong H, De Marzo AM, Laughner E, Lim M, Hilton DA, Zagzag D, Buechler P, Isaacs WB, Semenza GL, Simons JW, Overexpression of hypoxia-inducible factor 1? in common human cancers and their metastases, Cancer Res 59, 5830-5 (1999).

    PubMed  CAS  Google Scholar 

  83. Talks KL, Turley H, Gatter KC, Maxwell PH, Pugh CW, Ratcliffe PJ, Harris AL, The expression and distribution of the hypoxiainducible factors HIF-1? and HIF-2? in normal human tissues, cancers, and tumor-associated macrophages, Am J Pathol 157, 411-21 (2000).

    PubMed  CAS  Google Scholar 

  84. Koike T, Kimura N, Miyazaki K, Yabuta T, Kumamoto K, Takenoshita S, Chen J, Kobayashi M, Hosokawa M, Taniguchi A, Kojima T, Ishida N, Kawakita M, Yamamoto H, Takematsu H, Kozutsumi Y, Suzuki A, Kannagi R, Hypoxia induces adhesion molecules on cancer cells-a missing link between Warburg effect and induction of selectin ligand carbohydrates, Proc Natl Acad Sci USA in press, 2004.

  85. Kannagi R, Izawa M, Koike T, Miyazaki K, Kimura N, Carbohydrate-mediated cell adhesion in cancer metastasis and angiogenesis, Cancer Sci 95, 377-84 (2004).

    Article  PubMed  CAS  Google Scholar 

  86. Mack DR, Cheng PW, Perini F, Wei S, Hollingsworth MA, Altered expression of sialylated carbohydrate antigens in HT29 colonic carcinoma cells, Glycoconjugate J 15, 1155-63 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kannagi, R. Molecular mechanism for cancer-associated induction of sialyl Lewis X and sialyl Lewis A expression—The Warburg effect revisited. Glycoconj J 20, 353–364 (2003). https://doi.org/10.1023/B:GLYC.0000033631.35357.41

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GLYC.0000033631.35357.41

Navigation