Skip to main content
Log in

Mitochondrial Enzymes and Endoplasmic Reticulum Calcium Stores as Targets of Oxidative Stress in Neurodegenerative Diseases

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Considerable evidence indicates that oxidative stress accompanies age-related neurodegenerative diseases. Specific mechanisms by which oxidative stress leads to neurodegeneration are unknown. Two targets of oxidative stress that are known to change in neurodegenerative diseases are the mitochondrial enzyme α-ketoglutarate dehydrogenase complex (KGDHC) and endoplasmic reticulum calcium stores. KGDHC activities are diminished in all common neurodegenerative diseases and the changes are particularly well documented in Alzheimer's disease (AD). A second change that occurs in cells from AD patients is an exaggerated endoplasmic reticulum calcium store [i.e., bombesin-releasable calcium stores (BRCS)]. H2O2, a general oxidant, changes both variables in the same direction as occurs in disease. Other oxidants selectively alter these variables. Various antioxidants were used to help define the critical oxidant species that modifies these responses. All of the antioxidants diminish the oxidant-induced carboxy-dichlorofluorescein (cDCF) detectable reactive oxygen species (ROS), but have diverse actions on these cellular processes. For example, α-keto-β-methyl-n-valeric acid (KMV) diminishes the H2O2 effects on BRCS, while trolox and DMSO exaggerate the response. Acute trolox treatment does not alter H2O2-induced changes in KGDHC, whereas chronic treatment with trolox increases KGDHC almost threefold. The results suggest that KGDHC and BRCS provide targets by which oxidative stress may induce neurodegeneration and a useful tool for selecting antioxidants for reversing age-related neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Aksenov, M. Y., Aksenova, M. V., Butterfield, D. A., Geddes, J. W., and Markesbery, W. R. (2001). Neuroscience 103, 373–383.

    PubMed  Google Scholar 

  • Butterworth, R. F., Kril, J. J., and Harper, C. G. (1993). Alcohol Clin. Exp. Res. 17, 1084–1088.

    PubMed  Google Scholar 

  • Calingasan, N. Y., Uchida, K., and Gibson, G. E. (1999). J. Neurochem. 72, 751–756.

    PubMed  Google Scholar 

  • Chinopoulos, C., Tretter, L., and Adam-Vizi, V. (1999). J. Neurochem. 73, 220–228.

    PubMed  Google Scholar 

  • Gibson, G. E., and Blass, J. P. (1976). J. Neurochem. 26, 1073–1078.

    PubMed  Google Scholar 

  • Gibson, G. E., Haroutunian, V., Zhang, H., Park, L. C., Shi, Q., Lesser, M., Mohs, R. C., Sheu, R. K., and Blass, J. P. (2000). Ann. Neurol. 48, 297–303.

    PubMed  Google Scholar 

  • Gibson, G. E., Kingsbury, A. E., Xu, H., Lindsay, J. G., Daniel, S., Foster, O. J., Lees, A. J., and Blass, J. P. (2003). Neurochem. Int. 43, 129–135.

    PubMed  Google Scholar 

  • Gibson, G. E., Park, L. C., Sheu, K. F., Blass, J. P., and Calingasan, N. Y. (2000). Neurochem. Int. 36,97–112.

    PubMed  Google Scholar 

  • Gibson, G. E., Vestling, M., Zhang, H., Szolosi, S., Alkon, D., Lannfelt, L., Gandy, S., and Cowburn, R. F. (1997). Neurobiol. Aging 18, 573–580.

    PubMed  Google Scholar 

  • Gibson, G. E., Zhang, H., Sheu, K. F., Bogdanovich, N., Lindsay, J. G., Lannfelt, L., Vestling, M., and Cowburn, R. F. (1998). Ann. Neurol. 44, 676–681.

    PubMed  Google Scholar 

  • Gibson, G. E., Zhang, H., Sheu, K. F., and Park, L. C. (2000). Biochim. Biophys. Acta 1502, 319–329.

    PubMed  Google Scholar 

  • Gibson, G. E., Zhang, H., Toral-Barza, L., Szolosi, S., and Tofel-Grehl, B. (1996). Biochim. Biophys. Acta 1316,71–77.

    PubMed  Google Scholar 

  • Gibson, G. E., Zhang, H., Xu, H., Park, L. C., and Jeitner, T. M. (2002). Biochim. Biophys. Acta 1586, 177–189.

    PubMed  Google Scholar 

  • Guo, Q., Furukawa, K., Sopher, B. L., Pham, D. G., Xie, J., Robinson, N., Martin, G. M., and Mattson, M. P. (1996). Neuroreport 8, 379–383.

    PubMed  Google Scholar 

  • Hinerfeld, D., Traini, M. D., Weinberger, R. P., Cochran, B., Doctrow, S. R., Harry, J., and Melov, S. (2004). J. Neurochem. 88, 657–667.

    PubMed  Google Scholar 

  • Huang, H. M., Ou, H. C., Xu, H., Chen, H. L., Fowler, C., and Gibson, G. E. (2003). J. Neurosci. Res. 74, 309–317.

    PubMed  Google Scholar 

  • Humphries, K. M., Yoo, Y., and Szweda, L. I. (1998). Biochemistry 37, 552–557.

    PubMed  Google Scholar 

  • Ito, E., Oka, K., Etcheberrigaray, R., Nelson, T. J., McPhie, D. L., Tofel-Grehl, B., Gibson, G. E., and Alkon, D. L. (1994). Proc. Natl. Acad. Sci. U.S.A. 91, 534–538.

    PubMed  Google Scholar 

  • Klivenyi, P., Starkov, A. A., Calingasan, N. Y., Gardian, G., Browne, S. E., Yang, L., Bubber, P., Gibson, G. E., Patel, M. S., and Beal, M. F. (2004). J. Neurochem. 88, 1352–1360.

    PubMed  Google Scholar 

  • Kumar, M. J., Nicholls, D. G., and Andersen, J. K. (2003). J. Biol. Chem. 278, 46432–46439

    PubMed  Google Scholar 

  • Leissring, M. A., Akbari, Y., Fanger, C. M., Cahalan, M. D., Mattson, M. P., and LaFerla, F. M. (2000). J. Cell. Biol. 149, 793–798.

    PubMed  Google Scholar 

  • Lyras, L., Cairns, N. J., Jenner, A., Jenner, P., and Halliwell, B. (1997). J. Neurochem. 68, 2061–2069.

    PubMed  Google Scholar 

  • Markesbery, W. R., and Carney, J. M. (1999). Brain Pathol. 9, 133–146.

    PubMed  Google Scholar 

  • Mastrogiacomo, F., Bergeron, C., and Kish, S. J. (1993). J. Neurochem. 61, 2007–2014.

    PubMed  Google Scholar 

  • Nunomura, A., Perry, G., Aliev, G., Hirai, K., Takeda, A., Balraj, E. K., Jones, P. K., Ghanbari, H., Wataya, T., Shimohama, S., Chiba, S., Atwood, C. S., Petersen, R. B., and Smith, M. A. (2001). J. Neu-ropathol. Exp. Neurol. 60, 759–767.

    Google Scholar 

  • Park, L. C., Albers, D. S., Xu, H., Lindsay, J. G., Beal, M. F., and Gibson, G. E. (2001). J. Neurosci. Res. 66, 1028–1034.

    PubMed  Google Scholar 

  • Park, L. C., Zhang, H., Sheu, K. F., Calingasan, N. Y., Kristal, B. S., Lindsay, J. G., and Gibson, G. E. (1999). J. Neurochem. 72, 1948–1958.

    PubMed  Google Scholar 

  • Peterson, C., Gibson, G. E., and Blass, J. P. (1985). N. Engl. J. Med. 312, 1063–1065.

    PubMed  Google Scholar 

  • Pratico, D. (2001). Lipids 36(Suppl), S45–S47.

    PubMed  Google Scholar 

  • Rottkamp, C. A., Raina, A. K., Zhu, X., Gaier, E., Bush, A. I., Atwood, C. S., Chevion, M., Perry, G., and Smith, M. A. (2001). Free. Radic.Biol. Med. 30, 447–450.

    PubMed  Google Scholar 

  • Sheu, K. F., Calingasan, N. Y., Lindsay, J. G., and Gibson, G. E. (1998). J. Neurochem. 70, 1143–1150.

    PubMed  Google Scholar 

  • Smith, M. A., Richey Harris, P. L., Sayre, L. M., Beckman, J. S., and Perry, G. (1997). J. Neurosci. 17, 2653–2657.

    PubMed  Google Scholar 

  • Smith, M. A., Rottkamp, C. A., Nunomura, A., Raina, A. K., and Perry, G. (2000). Biochim. Biophys. Acta 1502, 139–144.

    PubMed  Google Scholar 

  • Yoo, A. S., Cheng, I., Chung, S., Grenfell, T. Z., Lee, H., Pack-Chung, E., Handler, M., Shen, J., Xia, W., Tesco, G., Saunders, A. J., Ding, K., Frosch, M. P., Tanzi, R. E., and Kim, T. W. (2000). Neuron 27, 561–572.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gibson, G.E., Huang, HM. Mitochondrial Enzymes and Endoplasmic Reticulum Calcium Stores as Targets of Oxidative Stress in Neurodegenerative Diseases. J Bioenerg Biomembr 36, 335–340 (2004). https://doi.org/10.1023/B:JOBB.0000041764.45552.f3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOBB.0000041764.45552.f3

Navigation