Skip to main content
Log in

Functional Development of the Mammary Gland: Use of Expression Profiling and Trajectory Clustering to Reveal Changes in Gene Expression During Pregnancy, Lactation, and Involution

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

To characterize the molecular mechanisms by which progesterone withdrawal initiates milk secretion, we examined global gene expression during pregnancy and lactation in mice, focusing on the period around parturition. Trajectory clustering was used to profile the expression of 1358 genes that changed significantly between pregnancy day 12 and lactation day 9. Predominantly downward trajectories included stromal and proteasomal genes and genes for the enzymes of fatty acid degradation. Milk protein gene expression increased throughout pregnancy, whereas the expression of genes for lipid synthesis increased sharply at the onset of lactation. Examination of regulatory genes with profiles similar or complementary to those of lipid synthesis genes led to a model in which progesterone stimulates synthesis of TGF-β, Wnt 5b, and IGFBP-5 during pregnancy. These factors are suggested to repress secretion by interfering with PRL and IGF-1 signaling. With progesterone withdrawal, PRL and IGF-1 signaling are activated, in turn activating Akt/PKB and the SREBPs, leading to increased lipid synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. C. Hovey, J. F. Trott, and B. K. Vonderhaar (2002). Establishing a framework for the functional mammary gland: From endocrinology to morphology. J. Mam. Gland Biol. Neoplasia 7:17–38.

    Google Scholar 

  2. M. C. Neville, T. B. McFadden, and I. A. Forsyth (2002). Hormonal regulation of mammary differentiation and lactation. J Mam. Gland Biol. Neoplasia 7:49–66.

    Google Scholar 

  3. C. Brisken (2002). Hormonal control of alveolar development and its implications for breast carcinogenesis. J. Mam. Gland Biol Neoplasia 7:39–48.

    Google Scholar 

  4. T. Phang, M. C. Neville, M. Rudolph, and L. Hunter (2003). Trajectory clustering: A nonparametric method for grouping gene expression time courses, with applications to mammary development. Pacific Symp. Biocomp. 351–362.

  5. N. M. Svrakic, O. Nesic, M. R. Dasu, D. Herndon, and J. R. Perez-Polo (2003). Statistical approach to DNA chip analysis. Recent Prog. Horm. Res. 58:75–93.

    Google Scholar 

  6. K. L. Schwertfeger, J. L. McManaman, C. A. Palmer, M. C. Neville, and S. M. Anderson (2003). Expression of constitutively activated Akt in the mammary gland leads to excess lipid synthesis during pregnancy and lactation. J. Lipid Res. 44:1100–1112.

    Google Scholar 

  7. M. T. Lewis, S. Ross, P. A. Strickland, C. W. Sugnet, E. Jimenez, C. Hui, and C. W. Daniel (2001). The Gli2 transcription factor is required for normal mouse mammary gland development. Dev. Biol. 238:133–144.

    Google Scholar 

  8. P. F. Lemkin, G. C. Thornwall, K. D. Walton, and L. Hennighausen (2000). The microarray explorer tool for data mining of cDNA microarrays: Application for the mammary gland. Nucleic Acids Res. 28:4452–4459.

    Google Scholar 

  9. C. J. Ormandy, M. J. Naylor, J. Harris, F. Robertson, N. D. Horseman, G. J. Lindeman, J. Visvader, and P. A. Kelly (2003). Investigation of the transcriptional changes underlying functional defects in the mammary glands of prolactin receptor knockout mice. Recent Prog. Horm. Res. 58:297–323.

    Google Scholar 

  10. S. R. Master, J. L. Hartmann, C. M. D-Cruz, S. E. Moody, E. A. Keiper, S. I. Ha, J. D. Cox, G. K. Belka, and L. A. Chodosh (2002). Functional microarray analysis of mammary organogenesis reveals a developmental role in adaptive thermogenesis. Mol. Endocrinol. 16:1185–1203.

    Google Scholar 

  11. U. Danesch, W. Hoeck, and G. M. Ringold (1992). Cloning and transcriptional regulation of a novel adipocyte-specific gene, FSP27. CAAT-enhancer-binding protein (C/EBP) and C/EBP-like proteins interact with sequences required for differentiation-dependent expression. J. Biol. Chem. 267:7185–7193.

    Google Scholar 

  12. R. R. Banerjee and M. A. Lazar (2003). Resistin: Molecular history and prognosis. J. Mol. Med. 81:218–225.

    Google Scholar 

  13. E. Hu, P. Liang, and B. M. Spiegelman (1996). AdipoQ is a novel adipose-specific gene dysregulated in obesity. J. Biol. Chem. 271:10697–10703.

    Google Scholar 

  14. V. Ribon, J. A. Printen, N. G. Hoffman, B. K. Kay, and A. R. Saltiel (1998). A novel, multifuntional c-Cbl binding protein in insulin receptor signaling in 3T3-L1 adipocytes. Mol. Cell. Biol. 18:872–879.

    Google Scholar 

  15. E. J. Blanchette-Mackie, N. K. Dwyer, T. Barber, R. A. Coxey, T. Takeda, C. M. Rondinone, J. L. Theodorakis, A. S. Greenberg, and C. Londos (1995). Perilipin is located on the surface layer of intracellular lipid droplets in adipocytes. J. Lipid Res. 36:1211–1226.

    Google Scholar 

  16. A. Martin-Hidalgo, C. Holm, P. Belfrage, M. C. Schotz, and E. Herrera (1994). Lipoprotein lipase and hormone-sensitive lipase activity and mRNA in rat adipose tissue during pregnancy. Am. J. Physiol. 266:E930–5X.

    Google Scholar 

  17. K. Das, R. Y. Lewis, T. P. Combatsiaris, Y. Lin, L. Shapiro, M. J. Charron, and P. E. Scherer (1999). Predominant expression of the mitochondrial dicarboxylate carrier in white adipose tissue. Biochem. J. 344:313–320.

    Google Scholar 

  18. J. J. Elias, D. R. Pitelka, and R. C. Armstrong (1973). Changes in fat cell morphology during lactation in the mouse. Anat. Rec. 177:533–547.

    Google Scholar 

  19. D. L. Kleinberg (1997). Early mammary development: Growth hormone and IGF-1. J. Mam. Gland Biol. Neoplasia 2: 49–57.

    Google Scholar 

  20. D. G. Hardie and D. A. Pan (2002). Regulation of fatty acid synthesis and oxidation by the AMP-activated protein kinase. Biochem. Soc. Trans. 30:1064–1070.

    Google Scholar 

  21. C. W. Pittius, L. Sankaran, Y. J. Topper, and L. Hennighausen (1988). Comparison of the regulation of the whey acidic protein gene with that of a hybrid gene containing the whey acidic protein gene promoter in transgenic mice. Mol. Endocrinol. 2:1027–1032.

    Google Scholar 

  22. G. W. Robinson, R. A. McKnight, G. H. Smith, and L. Hennighausen (1995). Mammary epithelial cells undergo secretory differentiation in cycling virgins but require pregnancy for the establishment of terminal differentiation. Development 121:2079–2090.

    Google Scholar 

  23. X. Liu, G. W. Robinson, K. U. Wagner, L. Garrett, A. Wynshaw-Boris, and L. Hennighausen (1997). Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Dev. 11:179–186.

    Google Scholar 

  24. B. Groner and F. Gouilleux (1995). Prolactin-mediated gene activation in mammary epithelial cells. Curr. Opin. Genet. Dev. 5:587–594.

    Google Scholar 

  25. E. Iavnilovitch, B. Groner, and I. Barash (2003). Overexpression and forced activation of stat5 in mammary gland of transgenic mice promotes cellular proliferation, enhances differentiation, and delays postlactational apoptosis. Mol. Cancer. Res. 1:32–47.

    Google Scholar 

  26. S. L. Wyszomierski and J. M. Rosen (2001). Cooperative effects of stat5 (signal transducer and activator of transcription 5) and C/EBP β (CAAT/enhancer-binding protein-β) on β-casein gene transcription are mediated by the glucocorticoid receptor. Mol. Endo. 15:228–240.

    Google Scholar 

  27. S. Li, and J. M. Rosen (1995). Nuclear factor I and mammary gland factor (STAT5) play a critical role in regulating rat whey acidic protein gene expression in transgenic mice. Mol. Cell Biol. 15:2063–2070.

    Google Scholar 

  28. R. A. McKnight, M. Spencer, J. Dittmer, J. N. Brady, R. J. Wall, and L. Hennighausen (1995). An Ets site in the whey acidic protein gene promoter mediates transcriptional activation in the mammary gland of pregnant mice but is dispensable during lactation. Mol. Endocrinol. 9:717–724.

    Google Scholar 

  29. J. E. Fata, Y. Y. Kong, J. Li, T. Sasaki, R. A. Moorehead, R. Elliott, S. Scully, E. B. Voura, D. L. Lacey, W. J. Boyle, R. Khokha, and J. M. Penninger (2000). The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development. Cell 103:41–50.

    Google Scholar 

  30. Y. Cao, G. Bonizzi, T. N. Seagroves, F. R. Greten, R. Johnson, E. V. Schmidt, and M. Karin (2001). IKKalpha provides an essential link between RANK signaling and cyclin D1 expression during mammary gland development. Cell 107:763–775.

    Google Scholar 

  31. Y. Shigetani, Y. Nobusada, and S. Kuratani (2000). Ectodermally derived FGF8 defines the maxillomandibular region in the early chick embryo: Epithelial-mesenchymal interactions in the specification of the craniofacial ectomesenchyme. Dev. Biol. 228:73–85.

    Google Scholar 

  32. J. D. Horton, J. L. Goldstein, and M. S. Brown (2002). SREBPs: Activators of the complete program of colesterol and fatty acid synthesis in the liver. J. Clin. Invest. 109:1125–1135.

    Google Scholar 

  33. M. T. Travers, A. J. Vallance, H. T. Gourlay, C. A. Gill, I. Klein, C. B. Bottema, and M. C. Barber (2001). Promoter I of the ovine acetyl-CoA carboxylase-alpha gene: An E-box motif at-114 in the proximal promoter binds upstream stimulatory factor (USF)-1 and USF-2 and acts as an insulin-response sequence in differentiating adipocytes. Biochem. J. 359:273–284.

    Google Scholar 

  34. J. M. Lopez, M. K. Bennett, H. B. Sanchez, J. M. Rosenfeld, and T. F. Osborne (1996). Sterol regulation of acetyl coenzyme A carboxylase: A mechanism for coordinate control of cellular lipid. Proc. Natl. Acad. Sci. U.S.A. 93:1049–1053.

    Google Scholar 

  35. S. Y. Oh, S. K. Park, J. W. Kim, Y. H. Ahn, S. W. Park, and K. S. Kim (2003). Acetyl-CoA carboxylase beta gene is regulated by sterol regulatory element-binding protein-1 in liver. J. Biol. Chem. 278:28410–28417.

    Google Scholar 

  36. M. Schweizer, K. Roder, L. Zhang, and S. S. Wolf (2002). Transcription factors acting on the promoter of the rat fatty acid synthase gene. Biochem. Soc. Trans. 30:1070–1072.

    Google Scholar 

  37. S. Nishikawa, R. C. Moore, N. Nonomura, and T. Oka (1994). Progesterone and EGF inhibit mouse mammary gland prolactin receptor and β-casein gene expression. Am. J. Physiol. 267:C1467-C1472.

    Google Scholar 

  38. Y. Mizoguchi, H. Yamaguchi, F. Aoki, J. Enami, and S. Sakai (1997). Corticosterone is required for the prolactin receptor gene expression in the late pregnant mouse mammary gland. Mol. Cell Endocrinol. 132:177–183.

    Google Scholar 

  39. L. Chodosh, H. Gardner, J. V. Rajan, D. Stairs, S. Marquis, and P. Leder (2000). Protein kinase expression during murine mammary development. Dev. Biol. 219:259–276.

    Google Scholar 

  40. D. Wang and H. S. Sul (1998). Insulin stimulation of the fatty acid synthase promoter is mediated by the phosphatidylinositol 3-kinase pathway. Involvement of protein kinase B/Akt. J. Biol. Chem. 273:25420–25426.

    Google Scholar 

  41. A. V. Lee, P. Zhang, M. Ivanova, S. Bonnette, S. Oesterreich, J. M. Rosen, S. Grimm, R. C. Hovey, B. K. Vonderhaar, C. R. Kahn, D. Torres, J. George, S. Mohsin, D. C. Allred, and D. L. Hadsell (2003). Developmental and hormonal signals dramatically alter the localization and abundance of insulin receptor substrate proteins in the mammary gland. Endocrinology 144:2683–2694.

    Google Scholar 

  42. R. K. Bartholomeusz, N. W. Bruce, C. E. Martin, and P. E. Hartmann (1976). Serial measurement of arterial plasma progesterone levels throughout gestation and parturition in individual rats. Acta Endocrinol. 82:436–443.

    Google Scholar 

  43. D. D. Nguyen, A. F. Parlow, and M. C. Neville (2001). Hormonal regulation of tight junction closure in the mouse mammary epithelium during the transition from pregnancy to lactation. J. Endocrinol. 170:347–356.

    Google Scholar 

  44. P. M. Ismail, J. Li, F. J. DeMayo, B. W. O'Malley, and J. P. Lydon (2002). A novel LacZ reporter mouse reveals complex regulation of the progesterone receptor promoter during mammary gland development. Mol. Endo. 16:2475–2489.

    Google Scholar 

  45. J. V. Soriano, M. S. Pepper, L. Orci, and R. Montesano (1998). Roles of hepatocyte growth factor/scatter factor and transforming growth factor-β1 in mammary gland ductal morphogenesis. J. Mam. Gland Biol. Neoplasia 3:133–150.

    Google Scholar 

  46. M. H. Barcellos-Hoff, R. Derynck, L.S. Tsang, and J. A. Weatherbee (1994). Transforming growth factor-β activation in irradiated murine mammary gland. J. Clin. Invest. 93:892–899.

    Google Scholar 

  47. L. M. Wakefield, E. Piek, and E. P. Boettinger (2001). TGF-β signaling in mammary gland development and tumorigenesis. J. Mam. Gland Biol. Neoplasia 6:67–82.

    Google Scholar 

  48. S. D. Robinson, G. B. Silberstein, A. B. Roberts, K. C. Flanders, and C. W. Daniel (1991). Regulated expression and growth inhibitory effects of transforming growth factor-beta isoforms in mouse mammary gland development. Development 113:867–878.

    Google Scholar 

  49. A. V. Nguyen and J. W. Pollard (2000). Transforming growth factor beta3 induces cell death during the first stage of mammary gland involution. Development 127:3107–3118.

    Google Scholar 

  50. S. J. Weber-Hall, D. J. Phippard, C. C. Neimeyer, and T. C. Dale (1994). Developmental and hormonal regulation of Wnt gene expression in the mouse mammary gland. Differentiation 57:205–214.

    Google Scholar 

  51. C. Brisken, A. Heineman, T. Chavarria, B. Elenbaas, J. Tan, S. K. Dey, J. A. McMahon, A. P. McMahon, and R. A. Weinberg (2000). Essential function of Wnt-4 in mammary gland development downstream of progesterone signaling. Genes Devel. 14:650–654.

    Google Scholar 

  52. S. B. Tepera, P. D. McCrea, and J. M. Rosen (2003). A beta-catenin survival signal is required for normal lobular development in the mammary gland. J. Cell Sci. 115:1137–1149.

    Google Scholar 

  53. W. Hsu, R. Shakya, and F. Costantini (2001). Impaired mammary gland and lymphoid development caused by inducible expression of Axin in transgenic mice. J. Cell Biol. 155:1055–1064.

    Google Scholar 

  54. M. Jonsson, K. Smith, and A. L. Harris (1998). Regulation of Wnt5a expression in human mammary cells by protein kinase C activity and the cytoskeleton. Br. J. Cancer 78:430–438.

    Google Scholar 

  55. E. L. Huguet, K. Smith, R. Bicknell, and A. L. Harris (1995). Regulation of Wnt5a mRNA expression in human mammary epithelial cells by cell shape, confluence, and hepatocyte growth factor. J. Biol. Chem. 270:12851–12856.

    Google Scholar 

  56. D-.A.D. Nguyen, N. Beeman, and M. C. Neville (2001). Regulation of tight junction permeability in the mammary gland. In Cerejido, M. and Anderson, J. M. (eds.), Tight Junctions, 2nd edn., CRC Press, New York, pp. 395–414.

    Google Scholar 

  57. E. Tonner, M. C. Barber, M. T. Travers, A. Logan, and D. J. Flint (1997). Hormonal control of insulin-like growth factor-binding protein-5 production in the involuting mammary gland of the rat. Endocrinology 138:5101–5107.

    Google Scholar 

  58. E. Tonner, M. C. Barber, G. J. Allan, J. Beattie, J. Webster, C. B. A. Whitelaw, and D. J. Flint (2002). Insulin-like growth factor binding protein-5 (IGFBP-5) induces premature cell death in the mammary glands of transgenic mice. Development 129:4547–4557.

    Google Scholar 

  59. E. Marshman, K. A. Green, D. J. Flint, A. White, C. H. Streuli, and M. Westwood (2003). Insulin-like growth factor binding protein 5 and apoptosis in mammary epithelial cells. J. Cell Sci. 15:675–682.

    Google Scholar 

  60. V. Boonyaratanakornkit, D. D. Strong, S. Mohan, D. J. Baylink, C. A. Beck, and T. A. Linkhard (1999). Progesterone stimulation of human insulin-like growth factor binding protein-5 gene transcription in human osteoblasts is mediated by a CACCC sequence in the proximal promoter. J. Biol. Chem. 274:26431–26438.

    Google Scholar 

  61. G. A. Jahn, N. Daniel, G. Jolivet, L. Belair, C. Bole-Feysot, P. A. Kelly, and J. Djiane (1997). In vivo study of prolactin (PRL) intracellular signalling during lactogenesis in the rat: JAK/STAT pathway is activated by PRL in the mammary gland but not in the liver. Biol. Reprod. 57:894–900.

    Google Scholar 

  62. Y. Lee and J. L. Voogt (1999). Feedback effects of placental lactogens on prolactin levels and Fos-related antigen immunoreactivity of tuberoinfundibular dopaminergic neurons in the arcuate nucleus during pregnancy in the rat. Endocrinology 140:2159–2166.

    Google Scholar 

  63. M. Matsumoto, W. Ogawa, K. Teshegawara, H. Inoue, K. Miyake, H. Sakaue, and M. Kasuga (2002). Role of the insulin receptor substrate 1 and phosphatidylinositol 3-kinase segnaling pathway in insulin-induced expression sterol regulatory element binding protein 1c and glucokinase genes in rat hepatocytes. Diabetes 51:1672–1680.

    Google Scholar 

  64. M. Fleischmann and P. B. Iynedjian (2000). Regulation of sterol regulatory-element binding protein 1 gene expression in liver: Role of insulin and protein kinase B/cAkt. Biochem. J. 349:13–17.

    Google Scholar 

  65. E. H. Davidson, J. P. Rast, P. Olivieri, A. Ransick, C. Calestani, C. H. Yuh, T. Minokawa, G. Amore, V. Himman, C. Arena-Menas, O. Otim, C. T. Brown, C. V. Livi, P. Y. Lee, R. Revilla, A. G. Rust, Z. Pan, M. J. Schilstra, P. J. Clarke, M. I. Amone, L. Rowen, R. A. Cameron, D. R. McClay, L. Hood, and H. Bolouri (2002). A genomic regulatory network for development. Science 295:1669–1678.

    Google Scholar 

  66. D. Gems and J. J. McElwee (2003). Microarraying mortality. Nature 6946:259–261.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret C. Neville.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rudolph, M.C., McManaman, J.L., Hunter, L. et al. Functional Development of the Mammary Gland: Use of Expression Profiling and Trajectory Clustering to Reveal Changes in Gene Expression During Pregnancy, Lactation, and Involution. J Mammary Gland Biol Neoplasia 8, 287–307 (2003). https://doi.org/10.1023/B:JOMG.0000010030.73983.57

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOMG.0000010030.73983.57

Navigation