Skip to main content
Log in

Laser Capture Microdissection and Advanced Molecular Analysis of Human Breast Cancer

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Advances in comprehensive genomic and proteomic technologies are providing researchers with an unprecedented opportunity for high-throughput molecular analysis of human breast cancer. Adaptation of these technologies to laser capture microdissection (LCM) is poised to exert dramatic change on the pace of breast cancer research. Although technical limitations have impeded the coupling of these high-throughput technologies to LCM, recent advances have allowed for the successful application of this cellular-based approach to breast cancer, and the results of such studies have provided researchers with unique insight into the disease. This approach holds great potential for rapid advancement in our understanding of breast cancer, and it is hoped that such advancements will lead to novel predictive and therapeutic strategies for women with the disease. This review outlines the current status of the adaptation of advanced molecular technologies to LCM and highlights recent studies in which this approach has been applied to human breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. R. Emmert-Buck, R. F. Bonner, P. D. Smith, R. F. Chuaqui, Z. Zhuang, S. R. Goldstein, R. A. Weiss, and L. A. Liotta (1996). Laser capture microdissection. Science 274:998–1001.

    Google Scholar 

  2. R. F. Bonner, M. Emmert-Buck, K. Cole, T. Pohida, R. Chuaqui, S. Goldstein, and L. A. Liotta (1997). Laser capture microdissection: Molecular analysis of tissue. Science 278:1481, 1483.

    Google Scholar 

  3. N. L. Simone, R. F. Bonner, J. W. Gillespie, M. R. Emmert-Buck, and L. A. Liotta (1998). Laser-capture microdissection: Opening the microscopic frontier to molecular analysis. Trends Genet. 14:272–276.

    Google Scholar 

  4. K. Schutze and G. Lahr (1998). Identification of expressed genes by laser-mediated manipulation of single cells. Nat. Biotechnol. 16:737–742.

    Google Scholar 

  5. K. Kolble (2000). The LEICA microdissection system: Design and applications. J. Mol. Med. 78:B24-B25.

    Google Scholar 

  6. D. C. Allred, S. K. Mohsin, and S. A. Fuqua (2001). Histological and biological evolution of human premalignant breast disease. Endocr. Relat. Cancer 8:47–61.

    Google Scholar 

  7. D. L. Page and L. W. Rogers (1992). Combined histologic and cytologic criteria for the diagnosis of mammary atypical ductal hyperplasia. Hum. Pathol. 23:1095–1097.

    Google Scholar 

  8. L. W. Dalton, S. E. Pinder, C. E. Elston, I. O. Ellis, D. L. Page, W. D. Dupont, and R. W. Blamey (2000). Histologic grading of breast cancer: Linkage of patient outcome with level of pathologist agreement. Mod. Pathol. 13:730–735.

    Google Scholar 

  9. R. Holland, J. L. Peterse, R. R. Millis, V. Eusebi, D. Faverly, M. J. van de Vijver, and B. Zafrani (1994). Ductal carcinoma in situ: A proposal for a new classification. Semin. Diagn. Pathol. 11:167–180.

    Google Scholar 

  10. D. L. Page, R. Gray, D. C. Allred, L. G. Dressler, A. K. Hatfield, S. Martino, N. J. Robert, and W. C. Wood (2001). Prediction of node-negative breast cancer outcome by histologic grading and S-phase analysis by flow cytometry: An Eastern Cooperative Oncology Group Study (2192). Am. J. Clin. Oncol. 24:10–18.

    Google Scholar 

  11. C. Y. Shen, J. C. Yu, Y. L. Lo, C. H. Kuo, C. T. Yue, Y. S. Jou, C. S. Huang, J. C. Lung, and C. W. Wu (2000). Genome-wide search for loss of heterozygosity using laser capture microdissected tissue of breast carcinoma: An implication for mutator phenotype and breast cancer pathogenesis. Cancer Res. 60:3884–3892.

    Google Scholar 

  12. C. Jones, M. P. Foschini, R. Chaggar, Y. J. Lu, D. Wells, J. M. Shipley, V. Eusebi, and S. R. Lakhani (2000). Comparative genomic hybridization analysis of myoepithelial carcinoma of the breast. Lab. Invest. 80:831–836.

    Google Scholar 

  13. P. Bertheau, L. F. Plassa, F. Lerebours, A. de Roquancourt, E. Turpin, R. Lidereau, H. de The, and A. Janin (2001). Allelic loss detection in inflammatory breast cancer: Improvement with laser microdissection. Lab. Invest. 81:1397–1402.

    Google Scholar 

  14. M. P. Hoang, A. Maitra, A. F. Gazdar, and J. Albores-Saavedra (2001). Primary mammary small-cell carcinoma: A molecular analysis of 2 cases. Hum. Pathol. 32:753–757.

    Google Scholar 

  15. K. Kurose, S. Hoshaw-Woodard, A. Adeyinka, S. Lemeshow, P. H. Watson, and C. Eng. (2001). Genetic model of multistep breast carcinogenesis involving the epithelium and stroma: Clues to tumour-microenvironment interactions. Hum. Mol. Genet. 10:1907–1913.

    Google Scholar 

  16. S. Oesterreich, D. C. Allredl, S. K. Mohsin, Q. Zhang, H. Wong, A. V. Lee, C. K. Osborne, and P. O'Connell (2001). High rates of loss of heterozygosity on chromosome 19p13 in human breast cancer. Br. J. Cancer 84:493–498.

    Google Scholar 

  17. N. Sodha, S. Bullock, R. Taylor, G. Mitchell, B. Guertl-Lackner, R. D. Williams, S. Bevan, K. Bishop, S. McGuire, R. S. Houlston, and R. A. Eeles (2002). CHEK2 variants in susceptibility to breast cancer and evidence of retention of the wild type allele in tumours. Br. J. Cancer 87:1445–1448.

    Google Scholar 

  18. E. Charafe-Jauffret, J. F. Moulin, C. Ginestier, D. Bechlian, N. Conte, J. Geneix, J. Adelaide, T. Noguchi, J. Hassoun, J. Jacquemier, and D. Birnbaum (2002). Loss of heterozygosity at microsatellite markers from region p11–21 of chromosome 8 in microdissected breast tumor but not in peritumoral cells. Int. J. Oncol. 21:989–996.

    Google Scholar 

  19. D. W. Bell, J. Erban, D. C. Sgroi, and D. A. Haber (2002). Selective loss of heterozygosity in multiple breast cancers from a carrier of mutations in both BRCA1 and BRCA2. Cancer Res. 62:2741–2743.

    Google Scholar 

  20. A. Kuijper, H. Buerger, R. Simon, K. L. Schaefer, A. Croonen, W. Boecker, W. E. van der, and P. J. van Diest (2002). Analysis of the progression of fibroepithelial tumours of the breast by PCR-based clonality assay. J. Pathol. 197:575–581.

    Google Scholar 

  21. M. Werner, A. Mattis, M. Aubele, M. Cummings, H. Zitzelsberger, P. Hutzler, and H. Hofler (1999). 20q13.2 amplification in intraductal hyperplasia adjacent to in situ and invasive ductal carcinoma of the breast. Virchows Arch. 435:469–472.

    Google Scholar 

  22. M. Aubele, A. Mattis, H. Zitzelsberger, A. Walch, M. Kremer, P. Hutzler, H. Hofler, and M. Werner (1999). Intratumoral heterogeneity in breast carcinoma revealed by laser-microdissection and comparative genomic hybridization. Cancer Genet. Cytogenet. 110:94–102.

    Google Scholar 

  23. M. Aubele, A. Mattis, H. Zitzelsberger, A. Walch, M. Kremer, G. Welzl, H. Hofler, and M. Werner (2000). Extensive ductal carcinoma In situ with small foci of invasive ductal carcinoma: Evidence of genetic resemblance by CGH. Int. J. Cancer 85:82–86.

    Google Scholar 

  24. Y. Daigo, S. F. Chin, K. L. Gorringe, L. G. Bobrow, B. A. Ponder, P. D. Pharoah, and C. Caldas (2001). Degenerate oligonucleotide primed-polymerase chain reaction-based array comparative genomic hybridization for extensive amplicon profiling of breast cancers: A new approach for the molecular analysis of paraffin-embedded cancer tissue. Am. J. Pathol. 158:1623–1631.

    Google Scholar 

  25. O. Schmidt-Kittler, T. Ragg, A. Daskalakis, M. Granzow, A. Ahr, T. J. Blankenstein, M. Kaufmann, J. Diebold, H. Arnholdt, P. Muller, J. Bischoff, D. Harich, G. Schlimok, G. Riethmuller, R. Eils, and C. A. Klein (2003). From latent disseminated cells to overt metastasis: Genetic analysis of systemic breast cancer progression. Proc. Natl. Acad. Sci. U.S.A. 100:7737–7742.

    Google Scholar 

  26. A. J. Hayes, W. Q. Huang, J. Yu, P. C. Maisonpierre, A. Liu, F. G. Kern, M. E. Lippman, S. W. McLeskey, and L. Y. Li (2000). Expression and function of angiopoietin-1 in breast cancer. Br. J. Cancer 83:1154–1160.

    Google Scholar 

  27. S. Glockner, U. Lehmann, N. Wilke, W. Kleeberger, F. Langer, and H. Kreipe (2000). Detection of gene amplification in intraductal and infiltrating breast cancer by laser-assisted microdissection and quantitative real-time PCR. Pathobiology 68:173–179.

    Google Scholar 

  28. U. Lehmann, S. Glockner, W. Kleeberger, H. F. von Wasielewski, and H. Kreipe (2000). Detection of gene amplification in archival breast cancer specimens by laser-assisted microdissection and quantitative real-time polymerase chain reaction. Am. J. Pathol. 156:1855–1864.

    Google Scholar 

  29. S. Glockner, U. Lehmann, N. Wilke, W. Kleeberger, F. Langer, and H. Kreipe (2001). Amplification of growth regulatory genes in intraductal breast cancer is associated with higher nuclear grade but not with the progression to invasiveness. Lab. Invest. 81:565–571.

    Google Scholar 

  30. I. E. Krop, D. Sgroi, D. A. Porter, K. L. Lunetta, R. LeVangie, P. Seth, C. M. Kaelin, E. Rhei, M. Bosenberg, S. Schnitt, J. R. Marks, Z. Pagon, D. Belina, J. Razumovic, and K. Polyak (2001). HIN-1, a putative cytokine highly expressed in normal but not cancerous mammary epithelial cells. Proc. Natl. Acad. Sci. U.S.A. 98:9796–9801.

    Google Scholar 

  31. H. Ge, X. Gong, and C. K. Tang (2002). Evidence of high incidence of EGFRvIII expression and coexpression with EGFR in human invasive breast cancer by laser capture microdissection and immunohistochemical analysis. Int. J. Cancer 98:357–361.

    Google Scholar 

  32. K. Shirakawa, H. Wakasugi, Y. Heike, I. Watanabe, S. Yamada, K. Saito, and F. Konishi (2002). Vasculogenic mimicry and pseudo-comedo formation in breast cancer. Int. J. Cancer 99:821–828.

    Google Scholar 

  33. C. M. Perou, T. Sorlie, M. B. Eisen, R. M. van de, S. S. Jeffrey, C. A. Rees, J. R. Pollack, D. T. Ross, H. Johnsen, L. A. Akslen, O. Fluge, A. Pergamenschikov, C. Williams, S. X. Zhu, P. E. Lonning, A. L. Borresen-Dale, P. O. Brown, and D. Botstein (2000). Molecular portraits of human breast tumours. Nature 406:747–752.

    Google Scholar 

  34. I. Hedenfalk, D. Duggan, Y. Chen, M. Radmacher, M. Bittner, R. Simon, P. Meltzer, B. Gusterson, M. Esteller, O. P. Kallioniemi, B. Wilfond, A. Borg, and J. Trent (2001). Gene-expression profiles in hereditary breast cancer. N. Engl. J. Med. 344:539–548.

    Google Scholar 

  35. T. Sorlie, C. M. Perou, R. Tibshirani, T. Aas, S. Geisler, H. Johnsen, T. Hastie, M. B. Eisen, R. M. van de, S. S. Jeffrey, T. Thorsen, H. Quist, J. C. Matese, P. O. Brown, D. Botstein, L. P. Eystein, and A. L. Borresen-Dale (2001). Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. U.S.A. 98:10869–10874.

    Google Scholar 

  36. L. J. Van't Veer, H. Dai, M. J. van de Vijver, Y. D. He, A. A. Hart, M. Mao, H. L. Peterse, K. K. van der, M. J. Marton, A. T. Witteveen, G. J. Schreiber, R. M. Kerkhoven, C. Roberts, P. S. Linsley, R. Bernards, and S. H. Friend (2002). Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536.

    Google Scholar 

  37. M. J. van de Vijver, Y. D. He, L. J. van't Veer, H. Dai, A. A. Hart, D. W. Voskuil, G. J. Schreiber, J. L. Peterse, C. Roberts, M. J. Marton, M. Parrish, D. Atsma, A. Witteveen, A. Glas, L. Delahaye, T. van der Velde, H. Bartelink, S. Rodenhuis, E. T. Rutgers, S. H. Friend, and R. Bernards (2002). A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 347:1999–2009.

    Google Scholar 

  38. A. G. Elkahloun, J. Gaudet, G. S. Robinson, and D. C. Sgroi (2002). In situ gene expression analysis of cancer using laser capture microdissection, microarrays and real time quantitative PCR. Cancer Biol. Ther. 1:354–358.

    Google Scholar 

  39. D. J. Duggan, M. Bittner, Y. Chen, P. Meltzer, and J. M. Trent (1999). Expression profiling using cDNA microarrays. Nat. Genet. 21:10–14.

    Google Scholar 

  40. D. C. Sgroi, S. Teng, G. Robinson, R. LeVangie, J. R. Hudson Jr., and A. G. Elkahloun (1999). In vivo gene expression profile analysis of human breast cancer progression. Cancer Res. 59:5656–5661.

    Google Scholar 

  41. L. Luo, R. C. Salunga, H. Guo, A. Bittner, K. C. Joy, J. E. Galindo, H. Xiao, K. E. Rogers, J. S. Wan, M. R. Jackson, and M. G. Erlander (1999). Gene expression profiles of lasercaptured adjacent neuronal subtypes. Nat. Med. 5:117–122.

    Google Scholar 

  42. V. Luzzi, M. Mahadevappa, R. Raja, J. A. Warrington, and M. A. Watson (2003). Accurate and reproducible gene expression profiles from laser capture microdissection, transcript amplification, and high density oligonucleotide microarray analysis. J. Mol. Diagn. 5:9–14.

    Google Scholar 

  43. G. Zhu, L. Reynolds, T. Crnogorac-Jurcevic, C. E. Gillett, E. A. Dublin, J. F. Marshall, D. Barnes, C. D'Arrigo, P. O. Van Trappen, N. R. Lemoine, and I. R. Hart (2003). Combination of microdissection and microarray analysis to identify gene expression changes between differentially located tumour cells in breast cancer. Oncogene 22:3742–3748.

    Google Scholar 

  44. X. J. Ma, R. Salunga, J. T. Tuggle, J. Gaudet, E. Enright, P. McQuary, T. Payette, M. Pistone, K. Stecker, B. M. Zhang, Y. X. Zhou, H. Varnholt, B. Smith, M. Gadd, E. Chatfield, J. Kessler, T. M. Baer, M. G. Erlander, and D. C. Sgroi (2003). Gene expression profiles of human breast cancer progression. Proc. Natl. Acad. Sci. U.S.A. 100:5974–5979.

    Google Scholar 

  45. E. Wang, L. D. Miller, G. A. Ohnmacht, E. T. Liu, and F. M. Marincola (2000). High-fidelity mRNA amplification for gene profiling. Nat. Biotechnol. 18:457–459.

    Google Scholar 

  46. L. R. Baugh, A. A. Hill, E. L. Brown, and C. P. Hunter (2001). Quantitative analysis of mRNA amplification by in vitro transcription. Nucleic Acids Res. 29:E29.

    Google Scholar 

  47. Y. Sugiyama, K. Sugiyama, Y. Hirai, F. Akiyama, and K. Hasumi (2002). Microdissection is essential for gene expression profiling of clinically resected cancer tissues. Am. J. Clin. Pathol. 117:109–116.

    Google Scholar 

  48. D. Porter, J. Lahti-Domenici, A. Keshaviah, Y. K. Bae, P. Argani, J. Marks, A. Richardson, A. Cooper, R. Strausberg, G. J. Riggins, S. Schnitt, E. Gabrielson, R. Gelman, and K. Polyak (2003). Molecular markers in ductal carcinoma in situ of the breast. Mol. Cancer Res. 1:362–375.

    Google Scholar 

  49. S. M. Mahfouz, M. Chevallier, and J. A. Grimaud (1987). Distribution of the major connective matrix components of the stromal reaction in breast carcinoma. An immunohistochemical study. Cell. Mol. Biol. 33:453–467.

    Google Scholar 

  50. L. Ronnov-Jessen, O. W. Petersen, and M. J. Bissell (1996). Cellular changes involved in conversion of normal to malignant breast: Importance of the stromal reaction. Physiol. Rev. 76:69–125.

    Google Scholar 

  51. B. Elenbaas and R. A. Weinberg (2001). Heterotypic signaling between epithelial tumor cells and fibroblasts in carcinoma formation. Exp. Cell Res. 264:169–184.

    Google Scholar 

  52. V. M. Weaver, O. W. Petersen, F. Wang, C. A. Larabell, P. Briand, C. Damsky, and M. J. Bissell (1997). Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J. Cell Biol. 137:231–245.

    Google Scholar 

  53. F. R. Miller, D. Medina, and G. H. Heppner (1981). Preferential growth of mammary tumors in intact mammary fatpads. Cancer Res. 41:3863–3867.

    Google Scholar 

  54. J. E. Price, A. Polyzos, R. D. Zhang, and L. M. Daniels (1990). Tumorigenicity and metastasis of human breast carcinoma cell lines in nude mice. Cancer Res. 50:717–721.

    Google Scholar 

  55. M. H. Barcellos-Hoff and S. A. Ravani (2000). Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells. Cancer Res. 60:1254–1260.

    Google Scholar 

  56. B. Elenbaas, L. Spirio, F. Koerner, M. D. Fleming, D. B. Zimonjic, J. L. Donaher, N. C. Popescu, W. C. Hahn, and R. A. Weinberg (2001). Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes Dev. 15:50–65.

    Google Scholar 

  57. A. Noel, M. C. Pauw-Gillet, G. Purnell, B. Nusgens, C. M. Lapiere, and J. M. Foidart (1993). Enhancement of tumorigenicity of human breast adenocarcinoma cells in nude mice by matrigel and fibroblasts. Br. J. Cancer 68:909–915.

    Google Scholar 

  58. D. Hanahan and R. A. Weinberg (2000). The hallmarks of cancer. Cell 100:57–70.

    Google Scholar 

  59. M. P. Shekhar, J. Werdell, S. J. Santner, R. J. Pauley, and L. Tait (2001). Breast stroma plays a dominant regulatory role in breast epithelial growth and differentiation: Implications for tumor development and progression. Cancer Res. 61:1320–1326.

    Google Scholar 

  60. N. D. Zantek, J. Walker-Daniels, J. Stewart, R. K. Hansen, D. Robinson, H. Miao, B. Wang, H. J. Kung, M. J. Bissell, and M. S. Kinch (2001). MCF-10A-NeoST: A new cell system for studying cell-ECM and cell-cell interactions in breast cancer. Clin. Cancer Res. 7:3640–3648.

    Google Scholar 

  61. R. K. Hansen and M. J. Bissell (2000). Tissue architecture and breast cancer: The role of extracellular matrix and steroid hormones. Endocr. Relat. Cancer 7:95–113.

    Google Scholar 

  62. V. M. Weaver, A. H. Fischer, O. W. Peterson, and M. J. Bissell (1996). The importance of the microenvironment in breast cancer progression: Recapitulation of mammary tumorigenesis using a unique human mammary epithelial cell model and a three-dimensional culture assay. Biochem. Cell Biol. 74:833–851.

    Google Scholar 

  63. D. B. Martin and P. S. Nelson (2001). From genomics to proteomics: Techniques and applications in cancer research. Trends Cell Biol. 11:S60-S65.

    Google Scholar 

  64. K. H. Lee (2001). Proteomics: A technology-driven and technology-limited discovery science. Trends Biotechnol. 19:217–222.

    Google Scholar 

  65. L. Anderson and J. Seilhamer (1997). A comparison of selected mRNA and protein abundances in human liver. Electrophoresis 18:533–537.

    Google Scholar 

  66. H. Hondermarck, A. S. Vercoutter-Edouart, F. Revillion, J. Lemoine, I. Yazidi-Belkoura, V. Nurcombe, and J. P. Peyrat (2001). Proteomics of breast cancer for marker discovery and signal pathway profiling. Proteomics 1:1216–1232.

    Google Scholar 

  67. D. E. Palmer-Toy, D. A. Sarracino, D. Sgroi, R. LeVangie, and P. E. Leopold (2000). Direct acquisition of matrix-assisted laser desorption/ionization time-of-flight mass spectra from laser capture microdissected tissues. Clin. Chem. 46:1513–1516.

    Google Scholar 

  68. B. J. Xu, R. M. Caprioli, M. E. Sanders, and R. A. Jensen (2002). Direct analysis of laser capture microdissected cells by MALDI mass spectrometry. J. Am. Soc. Mass Spectrom. 13:1292–1297.

    Google Scholar 

  69. J. D. Wulfkuhle, K. C. McLean, C. P. Paweletz, D. C. Sgroi, B. J. Trock, P. S. Steeg, and E. F. Petricoin III (2001). New approaches to proteomic analysis of breast cancer. Proteomics 1:1205–1215.

    Google Scholar 

  70. J. D. Wulfkuhle, D. C. Sgroi, H. Krutzsch, K. McLean, K. McGarvey, M. Knowlton, S. Chen, H. Shu, A. Sahin, R. Kurek, D. Wallwiener, M. J. Merino, E. F. Petricoin III, Y. Zhao, and P. S. Steeg (2002). Proteomics of human breast ductal carcinoma in situ. Cancer Res. 62:6740–6749.

    Google Scholar 

  71. R. C. Stein and M. J. Zvelebil (2002). The application of 2D gel-based proteomics methods to the study of breast cancer. J. Mammary Gland Biol. Neoplasia 385–393.

  72. P. A. Haynes and J. R. Yates III (2000). Proteome profiling-pitfalls and progress. Yeast 17:81–87.

    Google Scholar 

  73. S. P. Gygi, B. Rist, and R. Aebersold (2000). Measuring gene expression by quantitative proteome analysis. Curr. Opin. Biotechnol. 11:396–401.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis C. Sgroi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuller, A.P., Palmer-Toy, D., Erlander, M.G. et al. Laser Capture Microdissection and Advanced Molecular Analysis of Human Breast Cancer. J Mammary Gland Biol Neoplasia 8, 335–345 (2003). https://doi.org/10.1023/B:JOMG.0000010033.49464.0c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOMG.0000010033.49464.0c

Navigation