Skip to main content
Log in

Of Mice and Myc: c-Myc and Mammary Tumorigenesis

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

The proto-oncogene c-myc is involved in regulating proliferation and apoptosis, and its deregulation via genomic and postgenomic mechanisms, contributes to the development and progression of multiple human cancers, including those of the breast. Deregulated expression of c-Myc also contributes to neoplastic transformation by altering cellular differentiation pathways and by facilitating mutagenesis through induction of genomic instability. Transgenic and gene-knockout mice are frequently utilized to resolve the mechanisms through which specific genes influence the development and progression of malignancies. In this review, we discuss how research findings obtained from various c-myc transgenic mammary tumor models help to improve our resolution of c-Myc's role both in tumorigenesis of the murine mammary gland and cancer of the human breast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. P. Devilee and C. J. Cornelisse (1994). Somatic genetic changes in human breast cancer. Acta Biochim. Biophys. 1198:113–130.

    Google Scholar 

  2. D. W. Visscher, T. Wallis, S. Awussah, A. Mohamed, and J. D. Crissman (1997). Evaluation of Myc and chromosome 8 copy number in breast carcinoma by interphase cytogenetics. Genes Chromosomes Cancer 18:1–7.

    Google Scholar 

  3. T. Ried, K. E. Just, H. Hotlgreve-Grez, S. du Manoir, M. R. Speicher, E. Schröck, C. Latham, H. Blegen, A. Zetterberg, and T. Cremer (1995). Comparative genomic hybridization of formalin-fixed, paraffin-embedded breast tumors reveals different patterns of chromosomal gains and losses in fibroadenomas and diploid and aneuploid carcinomas. Cancer Res. 55:5415–5423.

    Google Scholar 

  4. M. Tirkkonen, M. Tanner, R. Karhu, A. Kallioniemi, J. Isola, and O. P. Kallioniemi (1998). Molecular cytogenetics of primary breast cancer by CGH. Genes Chromosomes Cancer 21:177–184.

    Google Scholar 

  5. R. D. Cardiff, M. R. Anver, B. A. Gusterson, L. Hennighausen, R. A. Jensen, M. J. Merino, S. Rehm, J. Russo, F. A. Tavassoli, L. M. Wakefield, J. M. Ward, and J. E. Green (2000). The mammary pathology of genetically engineered mice: The consensus report and recommendations from the Annapolis meeting. Oncogene 19:968–988.

    Google Scholar 

  6. R. D. Cardiff and S. R. Wellings (1999). The comparative pathology of human and mouse mammary glands. J. Mammary Gland Biol. Neoplasia 4:105–122.

    Google Scholar 

  7. B. Vennstrom, D. Sheiness, J. Zabielski, and J. M. Bishop (1982). Isolation and characterization of c-Myc, a cellular homolog of the oncogene (v-Myc) of the avian myelocytomatosis virus strain 29. J. Virol. 42:773–779.

    Google Scholar 

  8. S. K. Oster, C. S. W. Ho, E. L. Soucie, and L. Z. Penn (2002). The myc oncogene: Marvelously complex. Adv. Cancer Res. 84:81–154.

    Google Scholar 

  9. C. V. Dang (1999). c-Myc target genes involved in cell growth, apoptosis and metabolism. Mol. Cell. Biol. 19:1–11.

    Google Scholar 

  10. M. H. Jamerson, M. D. Johnson, and R. B. Dickson (2000). Dual regulation of proliferation and apoptosis: c-myc in bitransgenic murine mammary tumor models. Oncogene 19:1065–1071.

    Google Scholar 

  11. C. Escot, C. Theillet, R. Lidereau, F. Spyratos, M. H. Champeme, K. Gest, R. Callahan (1986). Genetic alteration of the c-myc protooncogene (MYC) in human primary breast carcinomas. Proc. Natl. Acad. Sci. U.S.A. 83:4834–4838.

    Google Scholar 

  12. D. J. Liao and R. B. Dickson (2000). c-myc in breast cancer. Endocr. Relat. Cancer 7:143–164.

    Google Scholar 

  13. S. L. Deming, S. J. Nass, R. B. Dickson, and B. J. Trock (2000). c-Myc amplification in breast cancer: A meta-analysis of its occurrence and prognostic relevance. Br. J. Cancer 83:1688–1695.

    Google Scholar 

  14. L. E. Janocko, K. A. Brown, C. A. Smith, L. P. Gu, A. A. Pollice, S. G. Singh, T. Julian, N. Wolmark, L. Sweeney, J. F. Silverman, and S. E. Shackney (2001). Distinctive patterns of Her-2/neu, c-myc, and cyclin D1 gene amplification by fluorescence in situ hybridization in primary human breast cancers. Cytometry 46:136–149.

    Google Scholar 

  15. C. X. Deng and F. Scott (2000). Role of tumor suppressor gene brca1 in genetic stability and mammary gland tumor formation. Oncogene 19:1059–1064.

    Google Scholar 

  16. G. A. Doyle, J. M. Bordeau-Heller, S. Coulthard, L. F. Meisner, and J. Ross (2000). Amplification in human breast cancer of a gene encoding a c-myc mRNA binding protein. Cancer Res. 60:2756–2759.

    Google Scholar 

  17. P. Ioannidis, L. Mahaira, A. Papadopoulou, M. R. Teixeira, S. Heim, J. A. Andersen, E. Evangelou, U. Dafni, N. Pandis, and T. Trangas (2003). 8q24 copy number gains and expression of the c-myc mRNA stabilizing protein CRD-BP in primary breast carcinomas. Int. J. Cancer 104:54–59.

    Google Scholar 

  18. N. E. Hynes and H. A. Lane (2001). Myc and mammary cancer: Myc is a downstream effector of the ErbB2 receptor tyrosine kinase. J. Mammary Gland Biol. Neoplasia 6:141–150.

    Google Scholar 

  19. K. A. Waite and C. Eng (2002). Protean PTEN: Form and function. Am. J. Hum. Genet. 70:829–844.

    Google Scholar 

  20. R. Sears, G. Lone, J. DeGregori, and J. R. Nevins (1999). Ras enhances Myc protein stability. Mol. Cell 3:169–179.

    Google Scholar 

  21. M. J. West, M. Stoneley, and A. E. Willis (1998). Translational induction of the c-myc oncogene via activation of the FRAP/TOR signaling pathway. Oncogene 17:769–780.

    Google Scholar 

  22. T. A. Stewart, P. K. Pattengale, and P. Leder (1984). Spontaneous mammary adenocarcinomas in transgenic mice that carry and express MTV/myc fusion genes. Cell 38:627–637.

    Google Scholar 

  23. C. A. Schoenenberger, A. C. Andres, B. Groner, M. van der Valk, M. LeMeur, and P. Gerlinger (1988). Targeted c-myc gene expression in mammary glands of transgenic mice induces mammary tumors with constitutive milk protein gene transcription. EMBO J. 7:169–175.

    Google Scholar 

  24. E. P. Sandgren, J. A. Schroeder, T. H. Qui, R. D. Palmiter, R. L. Brinster, and D. C. Lee (1995). Inhibition of mammary gland involution is associated with transforming growth factor α but not c-myc-induced tumorigenesis in transgenic mice. Cancer Res. 55:3915–3927.

    Google Scholar 

  25. C. M. D'Cruz, E. J. Gunther, R. B. Boxer, J. L. Hartman, L. Sintasath, S. E. Moody, J. D. Cox, S. I. Ha, G. K. Belka, A. Golant, R. D. Cardiff, and L. A. Chodosh (2001). c-Myc induces mammary tumorigenesis by means of a preferred pathway involving spontaneous kras2 mutations. Nat. Med. 7:235–239.

    Google Scholar 

  26. L. A. Donehower, A. L. Huang, and G. L. Hager (1981). Regulatory and coding potential of the mouse mammary tumor virus long terminal redundancy. J. Virol. 37:226–238.

    Google Scholar 

  27. A. Leder, P. K. Pattengale, A. Kuo, T. A. Stewart, and P. Leder (1986). Consequences of widespread deregulation of the c-myc gene in transgenic mice: Multiple neoplasms and normal development. Cell 45:485–495.

    Google Scholar 

  28. E. Sinn, W. Muller, P. Pattengale, I. Tepler, R. Wallace, and P. Leder (1987). Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice: Synergistic action of oncogenes in vivo. Cell 49:465–475.

    Google Scholar 

  29. R. D. Cardiff, E. Sinn, W. Muller, and P. Leder (1991). Transgenic oncogenic mice: Tumor phenotype predicts genotype. Am. J. Pathol. 139:495–501.

    Google Scholar 

  30. L. T. Amundadottir, M. D. Johnson, G. Merlino, G. H. Smith, and R. B. Dickson (1995). Synergistic interaction of transforming growth factor α and c-myc in mouse mammary and salivary gland tumorigenesis. Cell Growth Differ. 6:737–748.

    Google Scholar 

  31. D. J. Bearss, R. J. Lee, D. A. Troyer, R. G. Pestell, and J. J. Windle (2002). Differential effects of p21WAF1/CIP1 deficiency on MMTV-ras and MMTV-myc mammary tumor properties. Cancer Res. 62:2077–2084.

    Google Scholar 

  32. Z. A. Weaver, S. J. McCormack, M. Liyanage, du S. Manoir, A. Coleman, E. Schröck, R. B. Dickson, and T. Ried (1999). A recurring pattern of chromosomal aberrations in mammary gland tumors of MMTV-c-myc transgenic mice. Genes Chromosomes Cancer 25:251–260.

    Google Scholar 

  33. C. J. Der, T. G. Krontiris, and G. M. Cooper (1982). Transforming genes of human bladder and lung carcinoma cell lines are homologous to the ras genes of Harvey and Kirsten sarcoma viruses. Proc Natl. Acad. Sci. U.S.A. 79:3637–3640.

    Google Scholar 

  34. M. Macaluso, G. Russo, C. Cinti, V. Bazan, N. Gebbia, and A. Russo (2002). Ras family genes: an interesting link between cell cycle and cancer. J. Cell. Physiol. 192:125–130.

    Google Scholar 

  35. S. Miyakis, G. Sourvinos, and D. A. Spandidos (1998). Differential expression and mutation of the ras family of genes in human breast cancer. Biochem. Biophys. Res. Commun. 251:609–612.

    Google Scholar 

  36. H. Land, L. F. Parada, and R. A. Weinberg (1983). Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304:596–602.

    Google Scholar 

  37. R. Jäger, U. Herzer, J. Schenkel, and H. Weiher (1997). Overexpression of Bcl-2 inhibits alveolar cell apoptosis during involution and accelerates c-myc-induced tumorigenesis of the mammary gland in transgenic mice. Oncogene 15:1787–1795.

    Google Scholar 

  38. S. J. McCormack, Z. Weaver, S. Deming, G. Natarajan, J. Torri, M. D. Johnson, M. Liyanage, T. Ried, and R. B. Dickson (1998). Myc/p53 interactions in transgenic mouse mammary development, tumorigenesis and chromosomal instability. Oncogene 16:2755–2766.

    Google Scholar 

  39. A. Elson, C. Deng, J. Campos-Torres, L. A. Donehower, and P. Leder (1995). The MMTV/c-myc transgene and p53 null alleles collaborate to induce T-cell lymphomas, but not mammary carcinomas in transgenic mice. Oncogene 11:181–190.

    Google Scholar 

  40. J. E. Hundley, S. K. Koester, D. A. Troyer, S. G. Hilsenbeck, R. E. Barrington, and J. J. Windle (1997). Differential regulation of cell cycle characteristics and apoptosis in MMTV-myc and MMTV-ras mouse mammary tumors. Cancer Res. 57:600–603.

    Google Scholar 

  41. A. L. Schechter, D. F. Stern, L. Vaidyanathan, S. J. Decker, J. A. Drebin, M. I. Green, and R. A. Weinberg (1984). The neu oncogene: an erb-B-related gene encoding a 185,000-Mr tumour antigen. Nature 312:513–516.

    Google Scholar 

  42. D. L. Dankort and W. J. Muller (2000). Signal transduction in mammary tumorigenesis. Oncogene 19:1038–1044.

    Google Scholar 

  43. S. Jepson, M. Komatsu, B. Haq, M. E. Arango, D. Huang, C. A. Carraway, and K. L. Carraway (2002). Muc4/sialomucin complex, the intermembrane erbB2 ligand, induces specific phosphorylation of erbB2 and enhances expression of p27(kip), but does not activate mitogen-activated kinase or protein kinase B/Akt pathways. Oncogene 21:7524–7532.

    Google Scholar 

  44. T. Cooke, J. Reeves, A. Lanigan, and P. Stanton (2001). HER2 as a prognostic and predictive marker for breast cancer. Ann. Oncol. 12:S23–S28.

    Google Scholar 

  45. W. J. Muller, E. Sinn, P. K. Pattengale, R. Wallace, and P. Leder (1988). Single-step induction of mammary adenocarcinomas in transgenic mice bearing the activated c-neu oncogene. Cell 54:105–115.

    Google Scholar 

  46. C. T. Guy, M. A. Webster, M. Schaller, T. J. Parsons, Cardiff, and W. J. Muller (1992). Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc. Natl. Acad. Sci. U.S.A. 89:10578–10582.

    Google Scholar 

  47. Y. Tsujimoto, J. Cossman, E. Jaffe, and C. M. Croce (1985). Involvement of the bcl-2 gene in human follicular lymphoma. Science 228:1440–1443.

    Google Scholar 

  48. Y. Tsujimoto (1998). Role of Bcl-2 family proteins in apoptosis: apoptosomes or mitochondria? Genes Cell 3:697–707.

    Google Scholar 

  49. C. F. Lincz (1998). Deciphering the apoptotic pathway: All roads lead to death. Immunol. Cell Biol. 76:1–19.

    Google Scholar 

  50. J. M. Zapata, M. Krajewska, S. Krajewski, R. P. Huang, S. Takayama, H. G. Wang, E. Adamson, and J. C. Reed (1998). Expression of multiple apoptotic-regulatory genes in human breast cancer cell lines and primary tumors. Breast Cancer Res. Treat. 47:129–140.

    Google Scholar 

  51. S. Krajewski, M. Krajewska, B. C. Turner, C. Pratt, B. Howard, J. M. Zapata, V. Frenkel, S. Robertson, Y. Ionov, H. Yamamoto, M. Perucho, S. Takayama, and J. C. Reed (1999). Prognostic significance of apoptosis regulators in breast cancer. Endocr. Relat. Cancer 6:29–40.

    Google Scholar 

  52. A. Shilkaitis, J. Graves, R. R. Mehta, L. Hu, M. You, V. Steele, G. Kelloff, and K. Christov (2000). Bcl-2 and Bax are differentially expressed in hyperplastic, premalignant and malignant lesions of mammary carcinogenesis. Cell Growth Differ. 11:437–445.

    Google Scholar 

  53. K. Schorr, M. Li, U. Bar, Peled, A. Lewis, A. Heredia, B. Lewis, C. M. Knudson, S. J. Korsmeyer, R. Jäger, H. Weiher, and P. A. Furth (1999). Gain of Bcl-2 is more potent that Bax loss in regulating mammary epithelial cell survival in vivo. Cancer Res. 59:2541–2545.

    Google Scholar 

  54. I. Martinez-Lacaci, C. Bianco, M. De Santis, and D. S. Salomon (1999). Epidermal growth factor-related peptides and their cognate receptors in breast cancer. In: A. M. Bowcock, (ed.) Breast Cancer: Molecular Genetics, pathogenesis, and therapeutics, Vol. 1, Humana Press, Totowa NJ, pp. 31–57.

    Google Scholar 

  55. L. V. Crawford, D. C. Pim, E. G. Gurney, P. Goodfellow, and J. Taylor-Papdimitriou (1981). Detection of a common feature in several human tumor cell lines—A 53,000-dalton protein. Proc. Natl. Acad. Sci. U.S.A. 78:41–45.

    Google Scholar 

  56. W. S. El-Deiry (1998). Regulation of p53 downstream genes. Semin. Cancer Biol. 8:345–357.

    Google Scholar 

  57. D. Medina, F. S. Kittrell, A. Shepard, L. C. Stephens, C. Jiang, J. Lu, D. C. Allred, M. McCarthy, and R. L. Ullrich (2002). Biological and genetic properties of the p53 null preneoplastic mammary epithelium. FASEB J. 16:881–883.

    Google Scholar 

  58. J. W. Harper, G. Adami, N. Wei, K. Keyomarsi, and S. Elledge (1993). The p21 cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75:805–816.

    Google Scholar 

  59. W. S. El-Deiry, T. Tokino, V. E. Velculescu, D. B. Levy, R. Parsons, J. M. Trent, D. Lin W. E. Mercer, K. W. Kinzler, and B. Vogelstein (1993). WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825.

    Google Scholar 

  60. C. J. Sherr and J. M. Roberts (1999). CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13:1501–1512.

    Google Scholar 

  61. A. L. Gartel and A. L. Tyner (2002). The role of the cyclindependent kinase inhibitor p21 in apoptosis. Mol. Cancer Ther. 1:639–649.

    Google Scholar 

  62. K. V. Desai, N. Xiao, W. Wang, L. Gangi, J. Greene, J. I. Powell, R. B. Dickson, P. A. Furth, K. Hunter, R. Kucherlapati, R. Simon, E. T. Liu, and J. E. Green (2002). Initiating oncogenic events determine gene-expression patterns of human breast cancer models. Proc. Natl. Acad. Sci. U.S.A. 99:6967–6972.

    Google Scholar 

  63. M. H. Jamerson, M. D. Johnson, P. A. Furth, S. J. Korsmeyer, G. Nunez, and R. B. Dickson (2001). Gain of bcl-x L and loss of bax cooperate in c-myc-mediated mammary tumorigenesis, Keystone Symposium: Molecular Mechanisms of Apoptosis, Abstract #239.

  64. R. K. Sypniewska, L. Hoflack, D. J. Bearss, and C. Gravecamp (2002). Potential mouse tumor model for pre-clinical testing of MAGE-specific breast cancer vaccines. Breast Cancer Res. Treat. 74:221–233.

    Google Scholar 

  65. M. S. Noble, E. C. Rosfjord, R. Sharp, G. Merlino, and R. B. Dickson (2002). Ectopic VEGF expression promotes metastasis in a bitransgenic breast cancer model. Era of Hope Department of Defense Breast Cancer Research Program, Abstract P9-7.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert B. Dickson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jamerson, M.H., Johnson, M.D. & Dickson, R.B. Of Mice and Myc: c-Myc and Mammary Tumorigenesis. J Mammary Gland Biol Neoplasia 9, 27–37 (2004). https://doi.org/10.1023/B:JOMG.0000023586.69263.0b

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOMG.0000023586.69263.0b

Navigation