Skip to main content
Log in

Profiling ethylene-regulated gene expression in Arabidopsis thaliana by microarray analysis

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

An Erratum to this article was published on 01 August 2006

Abstract

Ethylene-regulated gene expression in leaves of Arabidopsis thaliana was investigated with an expressed sequence tag-based microarray containing about 6000 unique genes. Comparing expression profiles of the ethylene-insensitive mutant etr1-1, the ethylene-constitutive mutant ctr1-1, ethylene-treated wild-type and untreated wild-type plants identified ca. 7% of the investigated genes as ethylene-regulated. Exogenous ethylene treatment and ctr1-1 had similar changes in gene expression, but differences were noted. Ethylene-regulated genes involved in its own biosynthesis and signal transduction pathway were identified. A large number of transcription factors and some putative signaling components were highly regulated by ethylene. Chloroplast structural protein and photosynthetic genes were generally down-regulated. Ethylene appeared to regulate other primary metabolic genes. Plant defense and PR protein genes were differentially regulated, with some genes within this class highly up-regulated. Other ethylene-regulated genes identified were known sugar-, auxin-, wounding- and jasmonic acid-related genes, suggesting the existence of coordinated interactions between ethylene and other hormonal and defense signaling pathways. Although hundreds of potentially important transcriptome changes were identified, the functions of many ethylene-regulated genes remain unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abeles, F.B., Morgan, P.W. and Saltveit, M.E. 1992. Ethylene in Plant Biology. Academic Press, New York.

    Google Scholar 

  • Alexander, L. and Grierson, D. 2002. Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. J. Exp. Bot. 53: 2039-2055.

    Article  PubMed  CAS  Google Scholar 

  • Arabidopsis Genome Initiative. 2000. http://www.arabidopsis. org/info/agi.html

  • Arondel, V., Vergnolle, C., Cantrel C. and Kader, J.C. 2000. Lipid transfer proteins are encoded by a small multigene family in Arabidopsis thaliana. Plant Sci. 157: 1-12.

    Article  CAS  Google Scholar 

  • Assmann, S.M. 2002. Heterotrimeric and unconventional GTP binding proteins in plant cell signaling. Plant Cell 14: S355-S373.

    PubMed  CAS  Google Scholar 

  • Bandurski, R.S., Cohen, J.D., Slovin, J.P. and Reinecke, D.M. 1995. Hormone biosynthesis and metabolism. In: P.J. Davies (Ed.) Plant Hormones, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 39-65.

    Google Scholar 

  • Berger, S., Bell, E., Sadka, A. and Mullet, J.E. 1995. Arabidopsis thaliana Atvsp is homologous to soybean VspA and VspB, genes encoding vegetative storage protein acid phosphatases, and is regulated similarly by methyl jasmonate, wounding, sugars, light and phosphate. Plant Mol. Biol. 27: 933-942.

    Article  PubMed  CAS  Google Scholar 

  • Bleecker, A.B., Estelle, M.A., Somerville, C. and Kende, H. 1988. Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science 241: 1086-1089.

    CAS  Google Scholar 

  • Bolwell, G.P. and Wojtaszek, P. 1997. Mechanisms for the generation of reactive oxygen species in plant defense-a broad perspective. Physiol. Mol. Plant Path. 51: 347-366.

    Article  CAS  Google Scholar 

  • Bucher, M., Brunner, S., Zimmermann, P., Zardi, G.I., Amrhein, N., Willmitzer, L. and Riesmeier, J.W. 2002. The expression of an extensin-like protein correlates with cellular tip growth in tomato. Plant Physiol. 128: 911-923.

    Article  PubMed  CAS  Google Scholar 

  • Büttner, M. and Singh, K.B. 1997. Arabidopsis thaliana ethyleneresponsive element binding protein (AtEBP), an ethyleneinducible, GCC box DNA-binding protein interacts with an ocs element binding protein. Proc. Natl. Acad. Sci. USA 27: 5961-5966.

    Article  Google Scholar 

  • Chang, C., Kwok, S.F., Bleecker, A.B. and Meyerowitz, E.M. 1993. Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262: 539-544.

    PubMed  CAS  Google Scholar 

  • Chao, Q., Rothenberg, M., Solano, R., Roman, G., Terzaghi, W. and Ecker, J.R. 1997. Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENEINSENSITIVE3 and related proteins. Cell 89: 1133-1144.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Q.G. and Bleecker, A.B. 1995. Analysis of ethylene signaltransduction kinetics associated with seedling-growth response and chintinase induction in wild-type and mutant Arabidopsis. Plant Physiol. 108: 597-607.

    Article  PubMed  CAS  Google Scholar 

  • Chen, W., Provart, N.J., Glazebrook, J., Katagiri, F., Chang, HS., Eulgem, T., Mauch, F., Luan, S., Zou, G., Whitham, S.A., Budworth, P.R., Tao, Y., Xie, Z., Chen, X., Lam, S., Kreps, J.A., Harper, J.F., Si-Ammour, A., Mauch-Mani, B., Heinlein, M., Kobayashi, K., Hohn, T., Dangl, J.L., Wang, X. and Zhu, T. 2002. Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14: 559-574.

    Article  PubMed  CAS  Google Scholar 

  • Cheong, Y.H., Chang, H.S., Gupta, R., Wang, X., Zhu, T. and Luan, S. 2002. Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol. 129: 1-17.

    Article  Google Scholar 

  • Ecker, J.R. 1995. The ethylene signal transduction pathway in plants. Science 268: 667-675.

    PubMed  CAS  Google Scholar 

  • Eisen, M.B., Spellman, P.T., Brown, P.O. and Bostein, D. 1998. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95: 14863-14868.

    Article  PubMed  CAS  Google Scholar 

  • Ellis, C. and Turner, J.G. 2001. The arabidopsis mutant cev1 has constitutively active jasmonate and ethylene signal pathways and enhanced resistance to pathogens. Plant Cell 13: 1025-1033.

    Article  PubMed  CAS  Google Scholar 

  • Evertsz, E., Starink, P., Gupta, R. and Watson, D. 2000. Technology and application of gene expression microarrays. In: M. Schena (Ed.) Microarray Biochip Technology, Eaton Publishing, Natick, pp. 149-166.

    Google Scholar 

  • Gibson, S.I., Laby, R.J. and Kim, D. 2001. The sugar-insensitive1 (sis1) mutant of Arabidopsis is allelic to ctr1. Biochem. Biophys. Res. Commun. 280: 196-203.

    Article  PubMed  CAS  Google Scholar 

  • Gómez-Lim, M.A., Valedes-López, V., Cruz-Hernández, A. and Saucedo-Arias, L.J. 1993. Isolation and characterization of a gene involved in ethylene biosynthesis from Arabidopsis thaliana. Gene 134: 217-221.

    Article  PubMed  Google Scholar 

  • Grbic, V. and Bleecker, A.B. 1993. Role of ethylene in the control of leaf senescence in Arabidopsis thaliana. Plant Physiol. (suppl) 102: 131.

    Google Scholar 

  • Horvath, D.P., Schaffer, R., West, M. and Wisman, E. 2003. Arabidopsis microarrays identify conserved and differentially expressed genes involved in shoot growth and development from distantly related plant species. Plant J. 34: 125-134.

    Article  PubMed  CAS  Google Scholar 

  • Hua, J. and Meyerowitz, E. 1998. Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94: 261-271.

    Article  PubMed  CAS  Google Scholar 

  • Hua, J., Sakai, H., Nourizadeh, S., Chen, Q.G., Bleecker, A.B., Ecker, J.R. and Meyerowitz, E.M. 1998. EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis. Plant Cell 10: 1321-1332.

    Article  PubMed  CAS  Google Scholar 

  • Hunter, T. 1995. Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell 80: 225-236.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, P.R. and Ecker, J.R. 1998. The ethylene gas signal transduction pathway: a molecular perspective. Annu. Rev. Genet. 32: 227-254.

    Article  PubMed  CAS  Google Scholar 

  • Kieber, J.J., Rothenberg, M., Roman, G., Feldmann, K.A. and Ecker, J.R. 1993. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases. Cell 72: 427-441.

    Article  PubMed  CAS  Google Scholar 

  • Kieffer, F., Lherminier, J., Simon-Plas, F., Nicole, M., Paynot, M., Elmayan, T. and Blein, J.P. 2000. The fungal elicitor cryptogein induces cell wall modifications on tobacco cell suspension. J. Exp. Bot. 51: 1799-1811.

    Article  PubMed  CAS  Google Scholar 

  • Knoester, M., van Loon, L.C., van den Heuvel, J., Hennig, J., Bol, J.F. and Linthorst, H.J.M. 1998. Ethylene-insensitive tobacco lacks non-host resistance against soilborne fungi. Proc. Natl. Acad. Sci. USA 95: 1933-1937.

    Article  PubMed  CAS  Google Scholar 

  • Lam, E., Pontier, D. and del Pozo, O. 1999. Die and let live: programmed cell death in plants. Curr. Opin. Plant Biol. 2: 502-507.

    Article  PubMed  CAS  Google Scholar 

  • Lease, K.A., Wen, J., Li, J., Doke, J.T., Liscum, E. and Walker, J.C.2001. A mutant Arabidopsis heterotrimeric G-protein beta subunit affects leaf, flower, and fruit development. Plant Cell 13: 2631-2641.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Z.B., Ulmasov, T., Shi, X., Hagen, G. and Guilfoyle, T.J. 1994. Soybean GH3 promoter contains multiple auxin-inducible elements. Plant Cell 6: 645-657.

    Article  PubMed  CAS  Google Scholar 

  • Ma, L., Li, J., Qu, L., Hager, J., Chen, Z., Zhao, H. and Deng, X.W. 2001. Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathways. Plant Cell 13: 2589-2607.

    Article  PubMed  CAS  Google Scholar 

  • Maleck, K., Levine, A., Eulgem, T., Morgan, A., Schmid, J., Lawton, K.A., Dangl, J.L. and Dietrich, R.A. 2000. The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nature Genet. 26: 403-410.

    Article  PubMed  CAS  Google Scholar 

  • Membré, N., Bernier, F., Staiger, D. and Berna, A. 2000. Arabidopsis thaliana germin-like proteins: common and specific features point to a variety of functions. Planta 211: 345-354.

    Article  PubMed  Google Scholar 

  • Mittler, R. and Zilinskas, B.A. 1992. Molecular cloning and characterization of a gene encoding pea cytosolic ascorbate peroxidase. J. Biol. Chem. 267: 21802-21807.

    PubMed  CAS  Google Scholar 

  • Nairn, C.J., Lewandowski, D.J. and Burns, J.K. 1998. Genetics and expression of two pectinesterase genes in Valencia orange. Physiol. Plant. 102: 226-235.

    Article  CAS  Google Scholar 

  • O'Donnell, P.J., Calvert, C., Atzorn, R., Wasternack, C., Leyser, H.M.O. and Bowles, D.J. 1996. Ethylene as a signal mediating the wound response of tomato plants. Science 274: 1914-1917.

    Article  PubMed  Google Scholar 

  • Ohme-Takagi, M. and Shinshi, H. 1995. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7: 173-182.

    Article  PubMed  CAS  Google Scholar 

  • Ouyang, J., Shao, X. and Li, J. 2000. Indole-3-glycerol phosphate, a branchpoint of indole-3-acetic acid biosynthesis from the tryptophan biosynthetic pathway in Arabidopsis thaliana. Plant J. 24: 327-333.

    Article  PubMed  CAS  Google Scholar 

  • Potter, S., Uknes, S., Lawton, K., Winter, A.M., Chandler, D., DiMaio, J., Novitzky, R., Ward, E. and Ryals, J. 1993. Regulation of a hevein-like gene in Arabidopsis. Mol. Plant-Microbe Interact. 6: 680-685.

    PubMed  CAS  Google Scholar 

  • Raz, V. and Fluhr, R. 1993. Ethylene signal is transduced via protein phosphorylation events in plants. Plant Cell 5: 523-530.

    Article  PubMed  CAS  Google Scholar 

  • Reddy, A.S. and Poovaiah, B.W. 1990. Molecular cloning and sequencing of a cDNA for an auxin-repressed mRNA: correlation between fruit growth and repression of the auxin-regulated gene. Plant Mol. Biol. 14: 127-136.

    Article  PubMed  CAS  Google Scholar 

  • Reinke, V., Smith, H.E., Nance, J., Doren, A., Begley, R., Jones, S.J.M., Davis, E.B., Scherer, S., Ward, S. and Kim, S.K. 2000. A global profile of germline gene expression in C. elegans. Mol. Cell 6: 605-616.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, J.A., Elliott, K.A. and González-Carranza, Z.H. 2002. Abscission, dehiscence, and other cell separation processes. Annu. Rev. Plant Biol. 53: 131-158.

    Article  PubMed  CAS  Google Scholar 

  • Rojo, E., León, J. and Sánchez-Serrano, J.J. 1999. Cross-talk between wound signaling pathways determines local versus systemic gene expression in Arabidopsis thaliana. Plant J. 20: 135-142.

    Article  PubMed  CAS  Google Scholar 

  • Scheideler, M., Schlaich, N.L., Fellenberg, K., Beissbarth, T., Hauser, N.C., Vingron, M., Slusarenko, A.J. and Hoheisel, J.D. 2002. Monitoring the switch from housekeeping to pathogen defense metabolism in Arabidopsis thaliana using cDNA arrays. J. Biol. Chem. 277: 10555-10561.

    Article  PubMed  CAS  Google Scholar 

  • Schena, M., Shalon, D. and Brown, P.O. 1995. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270: 467-470.

    PubMed  CAS  Google Scholar 

  • Schenk, P.M., Kazan, K., Wilson, I., Anderson, J.P., Richmond, T., Somerville, S.C. and Manners, J.M. 2000. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc. Natl. Acad. Sci. USA 97: 11655-11660.

    Article  PubMed  CAS  Google Scholar 

  • Sehnke, P.C., DeLille, J.M. and Ferl, R.J. 2002. Consummating signal transduction: the role of 14-3-3 proteins in the completion of signal-induced transitions in protein activity. Plant Cell 14: S339-S354.

    PubMed  CAS  Google Scholar 

  • Smart, C.M. 1994. Gene expression during leaf senescence. New Phytol. 126: 419-448.

    Article  CAS  Google Scholar 

  • Stotz, H.U., Pittendrigh, B.R., Kroymann, J., Weniger, K., Fritsche, J., Bauke, A. and Mitchell-Olds, T. 2000. Induced plant defense responses against chewing insects. Ethylene signaling reduces resistance of arabidopsis against Egyptian cotton worm but not diamondback moth. Plant Physiol. 124: 1007-1018.

    Article  PubMed  CAS  Google Scholar 

  • Tanimoto, M., Roberts, K. and Dolan, L. 1995. Ethylene is a positive regulator of root hair development in Arabidopsis thaliana. Plant J. 8: 943-948.

    PubMed  CAS  Google Scholar 

  • Tieman, D.M., Ciardi, J.A., Taylor, M.G. and Klee, H.J. 2001. Members of the tomato LeEIL (EIN3-like) gene family are functionally redundant and regulate ethylene responses throughout plant development. Plant J. 26: 47-58.

    Article  PubMed  CAS  Google Scholar 

  • Turner, J.G., Ellis, C. and Devoto, A. 2002. The jasmonate signal pathway. Plant Cell 14: S153-S164.

    PubMed  CAS  Google Scholar 

  • Wang, K.L.C., Li, H. and Ecker, J.R. 2002. Ethylene biosynthesis and signaling networks. Plant Cell 14: S131-S151.

    PubMed  CAS  Google Scholar 

  • Wilkinson, J.Q., Lanahan, M.B., Clark, D.G., Bleecker, A.B., Chang, C., Meyerowitz, E.M. and Klee, H.J. 1997. A dominant mutant receptor from Arabidopsis confers ethylene insensitivity in heterologous plants. Nature Biotech. 15: 444-447.

    Article  CAS  Google Scholar 

  • Xu, Y. Chang, P.F.L., Liu, D., Narasimhan, M.L., Raghothama, K.G., Hasegawa, P.M. and Bressan, R.A. 1994. Plant defense genes are synergistically induced by ethylene and methyl jasmonate. Plant Cell 6: 1077-1085.

    Article  PubMed  CAS  Google Scholar 

  • Yang, S.F. and Hoffman, N.E. 1984. Ethylene biosynthesis and its regulation in higher-plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 35: 155-189.

    Article  CAS  Google Scholar 

  • Yip, W.-K., Moore, T. and Yang, S.F. 1992. Differential accumulation of transcripts for four tomato 1-aminocyclopropane-1-carboxylate synthase homologs under various conditions. Proc. Nat. Acad. Sci. USA 89: 2475-2479.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, L., Zhang, Y., Zhou, Y., An, S., Zhou, Y. and Cheng, J. 2002. Response of gene expression in Saccharomyces cerevisiae to amphotericin B and nystatin measured by microarrays. J. Antimicrob. Chemother. 49: 905-915.

    Article  PubMed  CAS  Google Scholar 

  • Zhong, G.Y., Goren, R., Riov, J., Sisler, E.C. and Holland, D. 2001. Characterization of an ethylene-induced esterase gene isolated from Citrus sinensis by competitive hybridization. Physiol. Plant. 113: 267-274.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, T. and Wang, X. 2000. Large scale profiling of the arabidopsis genome. Plant Physiol. 124: 1472-1476.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacqueline K. Burns.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s11103-006-8444-0.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Zhong, G., Burns, J.K. Profiling ethylene-regulated gene expression in Arabidopsis thaliana by microarray analysis. Plant Mol Biol 53, 117–131 (2003). https://doi.org/10.1023/B:PLAN.0000009270.81977.ef

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PLAN.0000009270.81977.ef

Navigation