Skip to main content
Log in

A Rice Semi-Dwarf Gene, Tan-Ginbozu (D35), Encodes the Gibberellin Biosynthesis Enzyme, ent-Kaurene Oxidase

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

A rice (Oryza sativa L.) semi-dwarf cultivar, Tan-Ginbozu (d35 Tan-Ginbozu), contributed to the increase in crop productivity in Japan in the 1950s. Previous studies suggested that the semi-dwarf stature of d35 Tan-Ginbozu is caused by a defective early step of gibberellin biosynthesis, which is catalyzed by ent-kaurene oxidase (KO). To study the molecular characteristics of d35 Tan-Ginbozu, we isolated 5 KO-like(KOL) genes from the rice genome, which encoded proteins highly homologous to Arabidopsis and pumpkin KOs. The genes (OsKOL1to5) were arranged as tandem repeats in the same direction within a 120 kb sequence. Expression analysis revealed that OsKOL2 and OsKOL4 were actively transcribed in various organs, while OsKOL1 and OsKOL5 were expressed only at low levels; OsKOL3 may be a pseudogene. Sequence analysis and complementation experiments demonstrated that OsKOL2corresponds to D35. Homozygote with null alleles of D35showed a severe dwarf phenotype; therefore, d35 Tan-Ginbozu is a weak allele of D35. Introduction of OsKOL4 into d35 Tan-Ginbozu did not rescue its dwarf phenotype, indicating that OsKOL4 is not involved in GA biosynthesis. OsKOL4 and OsKOL5 are likely to take part in phytoalexin biosynthesis, because their expression was promoted by UV irradiation and/or elicitor treatment. Comparing d35 Tan-Ginbozu with other high yielding cultivars, we discuss strategies to produce culm architectures suitable for high crop yield by decreasing GA levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • Ashikari, M., Sasaki, A., Ueguchi-Tanaka, M., Itoh, H., Nishimura, A., Swapan, D., Ishiyama, K., Saito, T., Kobayashi, M., Khush, G.S., Kitano, H. and Matsuoka, M. 2002.Loss-of-function of a rice gibberellin biosynthetic gene, GA20 oxidase (GA20ox-2), led to the rice 'Green Revolution'. Breed Sci. 52: 143–150.

    Article  Google Scholar 

  • Evans, L.T. 1998. Feeding the ten billion. Plant and Population Growth. Cambridge University Press, Cambridge.

    Google Scholar 

  • Feng, Q., Zhang, Y., Hao, P., Wang, S., Fu, G., Huang, Y., Li, Y., Zhu, J., Liu, Y., Hu, X. et al. 2002. Sequence and analysis of rice chromosome 4. Nature 420: 316–320.

    Article  PubMed  Google Scholar 

  • Goff, S.A., Ricke, D., Lan, T.H., Presting, G., Wang, R., Dunn, M., Glazebrook, J., Sessions, A., Oeller, P.H. et al. 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296: 92–100.

    Article  PubMed  Google Scholar 

  • Hedden, P. 2003. The genes of the green revolution. Trends in Genetics 19: 5–9.

    Article  PubMed  Google Scholar 

  • Helliwell, C.A., Sheldon, C.C., Olive, M.R., Walker, A.R.W., Zeevaart, J.A.D., Peacock, W.J. and Dennis, E.S. 1998. Cloning of the Arabidopsis ent-kaurene oxidase gene GA3. Proc. Natl. Acad. Sci. USA 95: 9019–9024.

    Article  PubMed  Google Scholar 

  • Helliwell, C.A., Olive, M.R., Gebbie, L., Forster, R., Peacock, W.J. and Dennis, E.S. 2000. Isolation of an ent-kaurene oxidase cDNA from Cucurbita maxima. Aust. J. Plant. Physiol. 27: 1141–1149.

    Google Scholar 

  • Itoh, H., Ueguchi-Tanaka, M., Sentoku, N., Kitano, H., Matsuoka, M. and Kobayashi, M. 2001. Cloning and functional analysis of gibberellin 3b-hydroxylase genes that are differently expressed during the growth of rice. Proc. Natl. Acad. Sci. USA 98: 8909–8914.

    Article  PubMed  Google Scholar 

  • Izumi, K., Kamiya, Y., Sakurai, A., Oshio, H. and Takahashi, N. 1985. Studies of sites of action of a new plant growth retardant (E)-1-(4-chloro-phenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)-1-penten-3-ol (S-3307) and comparative effects of its stereoisomers in a cell-free system from Cucurbita maxima. Plant. Cell. Physiol. 26: 821–827.

    Google Scholar 

  • Kaneko, M., Itoh, H., Inukai, Y., Sakamoto, T., Ueguchi-Tanaka, M., Ashikari, M. and Matsuoka, M. 2003. Where do gibberellin biosynthesis and gibberellin signaling occur in rice plants? Plant J. 35: 104–115.

    Article  PubMed  Google Scholar 

  • Kato, H., Kodama, O. and Akatsuka, T. 1995. Characterization of an inducible P450 hydroxylase involved in the rice diterpene phytoalexin biosynthetic pathway. Arch. Biochem. Biophys. 316: 707–712.

    Article  PubMed  Google Scholar 

  • Khush, G.S. 1999. Green revolution: preparing for the 21st century. Genome 42: 646–655.

    Article  PubMed  Google Scholar 

  • Kikuchi, S., Satoh, K., Nagata, T., Kawagashira, N., Doi, K., Kishimoto, N., Yazaki, J., Ishikawa, M., Yamada, H., Ooka, H. et al. 2003. Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science 301: 376–379.

    Article  PubMed  Google Scholar 

  • Kuchitsu, K., Kikuyama, M. and Shibuya, N. 1993. Nacetylchitooligosaccharides, biotic elicitor for phytoalexin production, induce transient membrane depolarization in suspension-cultured rice cells. Protoplasma 174: 79–81.

    Google Scholar 

  • Lander, E.S., Green, P., Abrahamson, J., Barlow, A., Daly, M.J., Lincon, S.E. and Newburg, L. 1987. MAPMAKER: an interactive computer package for constructing primery genetic linkage maps of experimental and natural populations. Genomics 1: 174–181.

    PubMed  Google Scholar 

  • Lei, H-Y., Zhou, B., Zhang, Y., Hong, G-F. and Han, B. 2002. Structural analysis of a gene cluster encoding DFR-like proteins from rice chromosome 4. Acta. Biochem. Biophys. Sinica 34: 685–689.

    Google Scholar 

  • Lynch, M. and Conery, J.S. 2000. The evolutional fate and consequences of duplicate genes. Science 290: 1151–1155.

    Article  PubMed  Google Scholar 

  • Lin, S.Y., Sasaki, T. and Yano, M. 1998. Mapping quantitative trait loci controlling seed dormacy and heading date in rice, Oryza sativa L., using backcross inbred lines. Theo. Appl. Genet. 96: 997–1003.

    Article  Google Scholar 

  • Mohan, R.S., Yee, N.K., Coates, R.M., Ren, Y.Y., Stamenkovic, P., Mendez, I. and West, C.A. 1996. Biosynthesis of cyclic diterpene hydrocarbons in rice cell suspensions: conversion of 9,10-syn-labda-8 (17),13-dienyl diphosphate to 9-pimara-7,15-diene and stemar-13-ene. Arch. Biochem. Biophys. 330: 33–47.

    Article  PubMed  Google Scholar 

  • Moore, T.C., Yamane, H., Murofushi, N. and Takahashi, N. 1988. Concentrations of ent-kaurene and squalene in vegetative rice shoots. J. Plant Growth. Regul. 7: 145–151.

    Google Scholar 

  • Murakami, Y. 1968. A new rice seedling test for gibberellin, 'Microdrop method', and its use for testing extracts of rice and morning glory. Bot. Mag. Tokyo 81: 33–43.

    Google Scholar 

  • Murakami, Y. 1972. Dwarfing genes in rice and their relation to gibberellin biosynthesis. In DJ Carr, (Ed.), Plant Growth Substances. Springer-Verlag, Berlin, pp. 166–174

    Google Scholar 

  • Ogawa, S., Toyomasu, T., Yamane, H., Murofushi, N., Ikeda, R., Morimoto, Y., Nishimura, Y. and Omori, T. 1996. A step in the biosynthesis of gibberellins that is controlled by the mutation in the semi-dwarf rice cultivar Tan-Ginbozu. Plant Cell Physiol. 37: 363–368.

    Google Scholar 

  • Peng, J., Richards, D.E., Hartley, N.M., Murphy, G.P., Devos, K.M., Flintham, J.E., Beales, J., Fish, L.J., Worland, A.J., Pelica, F., Sudhakar, D., Christou, P.J.W., Gale, M.D. and Harberd, N.P. 1999. 'Green revolution' genes encode mutant gibberellin response modulators. Nature 400: 256–261.

    Article  PubMed  Google Scholar 

  • Sakamoto, T., Miura, K., Itoh, H., Tatsumi, T., Ueguchi-Tanaka, M., Ishiyama, K., Kobayashi, M., Agrawal, G. K., Takeda, S., Abe, K., Miyao, A., Hirochika, H., Kitano, H., Ashikari, M. and Matsuoka, M. 2004. An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol. 134: 1642–1653.

    Article  PubMed  Google Scholar 

  • Sasaki, A., Ashikari, M., Ueguchi-Tanaka, M., Itoh, H., Nishimura, A., Swapan, D., Ishiyama, K., Saito, T., Kobayashi, M., Khush,G.S., Kitano,H.and Matsuoka, M.2002a. A mutant gibberellin-synthesis gene in rice. Nature 416: 701–702.

    Article  PubMed  Google Scholar 

  • Sasaki, T., Matsumoto, T., Yamamoto, K., Sakata, K., Baba, T., Katayose, Y., Wu, J., Niimura, Y., Cheng, Z., Nagamura, Y. et al. 2002b. The genome sequence and structure of rice chromosome 1. Nature 420: 312–316.

    Article  PubMed  Google Scholar 

  • Sentoku, N., Sato, Y. and Matsuoka, M. 2000. Overexpression of rice OSH genes induces ectopic shoots on leaf sheaths of transgenic rice plants. Develop. Biol. 220: 358–364.

    Article  PubMed  Google Scholar 

  • Shinbashi, N., Kinoshita, T. and Takahashi, M. 1975. Gibberellin metabolism by the causal genes for 'Hosetsu-dwarf' and 'Tanginbozu-dwarf' (preliminary report)-genetic studies on rice plants, LXIII-. Mem. Fac. Agr. Hokkaido Univ. 9: 201–207.

    Google Scholar 

  • Spielmeyer, W., Ellis, M. and Chandler, P. 2002. Semidwarf (sd-1), green revolution rice, contains a defective gibberellin 20-oxidase gene. Proc. Natl. Acad. Sci. USA 99: 9043–9048.

    Article  PubMed  Google Scholar 

  • Suge, H. and Murakami, Y. 1968. Occurrence of a rice mutant deficient in gibberellin-like substances. Plant Cell Physiol. 9: 411–414.

    Google Scholar 

  • Vision, T.J., Brown, D.G. and Tanksley, S.D. 2000. The origin of genomic duplication in Arabidopsis. Science 290: 2114–2117.

    Article  PubMed  Google Scholar 

  • Ware, D. and Stein, L. 2003. Comparison of genes among cereals. Cur. Opin. Plant. Biol. 6: 121–127.

    Article  Google Scholar 

  • Wickham, K.A. and West, C.A. 1992. Biosynthesis of rice phytoalexins: identification of putative diterpene hydrocarbon precursors. Arch. Biochem. Biophys. 293: 320–332.

    PubMed  Google Scholar 

  • Yamada, A., Shibuya, N., Kodama, O. and Akatsuka, T. 1993. Induction of phytoalexin formation in suspensioncultured rice cells by N-acetylchitooligosaccharides. Biosci. Biotech. Biochem. 57: 405–409.

    Google Scholar 

  • Yu, J., Hu, S., Wang, J., Wong, G.K., Li, S., Liu, B., Deng, Y., Dai, L., Zhou, Y., Zhang, X. et al. 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296: 79–92.

    Article  PubMed  Google Scholar 

  • Zhang, W., McElroy, D. and Wu, R. 1991. Analysis of rice Act1 5' region activity in transgenic rice plants. Plant Cell 3: 1155–1165.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Itoh, H., Tatsumi, T., Sakamoto, T. et al. A Rice Semi-Dwarf Gene, Tan-Ginbozu (D35), Encodes the Gibberellin Biosynthesis Enzyme, ent-Kaurene Oxidase. Plant Mol Biol 54, 533–547 (2004). https://doi.org/10.1023/B:PLAN.0000038261.21060.47

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PLAN.0000038261.21060.47

Navigation