Skip to main content
Log in

Overexpression of Multiple Dehydrin Genes Enhances Tolerance to Freezing Stress in Arabidopsis

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

To elucidate the contribution of dehydrins (DHNs) to freezing stress tolerance in Arabidopsis, transgenic plants overexpressing multiple DHN genes were generated. Chimeric double constructs for expression of RAB18andCOR47(pTP9) or LTI29 and LTI30(pTP10) were made by fusing the coding sequences of the respective DHN genes to the cauliflower mosaic virus 35S promoter. Overexpression of the chimeric genes in Arabidopsis resulted in accumulation of the corresponding dehydrins to levels similar or higher than in cold-acclimated wild-type plants. Transgenic plants exhibited lower LT50 values and improved survival when exposed to freezing stress compared to the control plants. Post-embedding immuno electron microscopy of high-pressure frozen, freeze-substituted samples revealed partial intracellular translocation from cytosol to the vicinity of the membranes of the acidic dehydrin LTI29 during cold acclimation in transgenic plants. This study provides evidence that dehydrins contribute to freezing stress tolerance in plants and suggests that this could be partly due to their protective effect on membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alsheikh, M.K., Heyen, B.J. and Randall, S.K. 2003. Ion binding properties of the dehydrin ERD14 are dependent upon phosphorylation. J. Biol. Chem. 278: 40882-40889.

    PubMed  Google Scholar 

  • Artus, N.N., Uemura, M., Steponkus, P.L., Gilmour, S.J., Lin, C., Thomashow, M.F. 1996. Constitutive expression of the cold-regulated Arabidopsis thaliana COR15a gene affects both chloroplast and protoplast freezing tolerance. Proc. Nat. Acad. Sci. USA 93: 13404-13409.

    PubMed  Google Scholar 

  • Bechtold, N., Ellis, J. and Pelletier, G. 1993. In-planta Agrobacterium-mediated gene-transfer by infiltration of adult Arabidopsis thaliana plants. Comptes Rendus Acad. Sci. Ser. III Sci. Vie-Life Sci. 316: 1194-1199.

    Google Scholar 

  • Boyer, J.S. 1982. Plant productivity and environment. Science 218: 443-448.

    Google Scholar 

  • Bravo, L.A., Gallardo, J., Navarrete, A., Olave, N., Martinez, J., Alberdi, M., Close, T.J. and Corcuera, L.J. 2003. Cryoprotective activity of a cold-induced dehydrin purified from barley. Physiol. Plant 118: 262-269.

    Google Scholar 

  • Close, T.J. 1996. Dehydrins: Emergence of a biochemical role of a family of plant dehydration proteins. Physiol. Plant 97: 795-803.

    Google Scholar 

  • Close, T.J. 1997. Dehydrins: A commonality in the response of plants to dehydration and low temperature. Physiol. Plant 100: 291-296.

    Google Scholar 

  • Danyluk, J.D., Houde, M., Rassart, E. and Sarhan F. 1994. Differential expression of a gene encoding an acidic dehydrin in chilling sensitive and freezing tolerant gramineae species. FEBS Lett. 344: 20-24.

    PubMed  Google Scholar 

  • Danyluk, J., Perron, A., Houde, M., Limin, A., Fowler, B., Benhamou, N. and Sarhan, F. 1998. Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat. Plant Cell 10: 623-638.

    PubMed  Google Scholar 

  • Denecke, J., Derycke, R. and Botterman, J. 1992. Plant and mammalian sorting signals for protein retention in the endoplasmic-reticulum contain a conserved epitope. Embo. J. 11: 2345-2355.

    PubMed  Google Scholar 

  • Denecke, J., Ek, B., Caspers, M., Sinjorgo, K.M.C. and Palva, E.T. 1993. Analysis of sorting signals responsible for the accumulation of soluble reticuloplasmins in the plant endoplasmic-reticulum. J. Exp. Bot. 44: 213-221.

    Google Scholar 

  • Fowler, S. and Thomashow, M.F. 2002. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14: 1675-1690.

    PubMed  Google Scholar 

  • Gilmour, S.J., Sebolt, A.M., Salazar, M.P., Everard, J.D. and Thomashow, M.F. 2000. Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol. 124: 1854-1865.

    PubMed  Google Scholar 

  • Griffiths, G. 1993. Fine structure immunocytochemistry. Springer, Berlin, Heidelberg, New York.

    Google Scholar 

  • Hara, M., Terashima, T.F., Fukaya T. and Kuboi, T. 2003. Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta 217: 290-298.

    PubMed  Google Scholar 

  • Heino, P. and Palva, E.T. 2003. Signal transduction in plant cold acclimation. In H. Hirt and K. Shinozaki (Eds.), Topics in Current Genetics, vol. 4. Plant Responses To Abiotic Stress, Springer-Verlag, Berlin, Heidelberg, pp. 151-186

    Google Scholar 

  • Hess, M.W. 2003. Of plants and other pets: practical aspects of freeze-substitution and resin embedding. J. Microsc. (Oxford) 212: 44-52.

    PubMed  Google Scholar 

  • Hess, M.W. and Valenta, R. 1997. Profilin revealed in pollen nuclei: immuno-electron microscopy of high-pressure frozen Ledebouria socialis Roth (Hyacinthaceae). Sex Plant Reprod. 10: 283-287.

    Google Scholar 

  • Heyen, B.J., Alsheikh, M.K., Smith, E.A., Torvik, C.F., Seals, D.F. and Randall, S.K. 2002. The calcium-binding activity of a vacuole-associated, dehydrin-like protein is regulated by phosphorylation. Plant Physiol 130: 675-687.

    PubMed  Google Scholar 

  • Honjoh, K.-I., Oda, Y., Takata, R., Miayamoto, T. and Hatano, S. 1999. Introduction of the hiC6 gene, which encodes a homologue of a late embryogenesis abundant (LEA) protein, enhances freezing tolerance of yeast. J. Plant Phys 155: 509-512.

    Google Scholar 

  • Houde, M., Daniel, C., Lachapelle, M., Allard, F., Laliberte, S. and Sarhan, F. 1995. Immunolocalization of freezing-tolerance-associated proteins in the cytoplasm and nucleoplasm of wheat crown tissues. Plant J. 8: 583-593.

    PubMed  Google Scholar 

  • Imai, R., Chang, L., Ohta, A., Bray, E.A. and Takagi, M. 1996. A lea-class gene of tomato confers salt and freezing tolerance when expressed in Saccharomyces cerevisae. Gene 170: 243-248.

    PubMed  Google Scholar 

  • Ingram, J. and Bartels, D. 1996. The molecular basis of dehydration tolerance in plants. Annu. Rev. Plant Physiol. Plant. Mol. Biol. 47: 377-403.

    PubMed  Google Scholar 

  • Iturriaga, G., Schneider, K., Salamini, F. and Bartels, D. 1992. Expression of desiccation-related proteins from the resurrection plant Craterostigma plantagineum in transgenic tobacco. Plant. Mol. Biol. 20: 555-558.

    PubMed  Google Scholar 

  • Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K. and Shinozaki, K. 1999. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotechnol. 19: 287-291.

    Google Scholar 

  • Kawamura, Y. and Uemura, M. 2002. Changes in the plasma membrane from Arabidopsis thaliana within one week of cold acclimation. In: P. Li and E.T. Palva (Eds.), Plant Cold Hardiness; Gene Regulation and Genetic Engineering, Kluwer Academic/Plenum Publishers, New York, pp. 181-194.

    Google Scholar 

  • Kawamura, Y. and Uemura, M. 2003. Mass spectrometric approach for identifying putative plasma membrane proteins of Arabidopsis leaves associated with cold acclimation. Plant J. 36: 141-154.

    PubMed  Google Scholar 

  • Kaye, C., Neven, L., Hofig, A., Li, Q.B., Haskell, D. and Guy, C. 1998. Characterization of a gene for spinach CAP160 and expression of two spinach cold-acclimation proteins in tobacco. Plant Physiol. 116: 1367-1377.

    PubMed  Google Scholar 

  • Kazuoka, T. and Oeda, K. 1994. Purification and characterization of Cor85-oligomeric complex from cold-acclimated spinach. Plant Cell Physiol. 35: 601-611.

    Google Scholar 

  • Kiyosue, T., Yamaguchi-Shinozaki, K. and Shinozaki, K. 1994. Characterization of two cDNAs (Erd10 and Erd14) corresponding to genes that respond rapidly to dehydration stress in Arabidopsis thaliana. Plant Cell Physiol. 35: 225-231.

    PubMed  Google Scholar 

  • Koag, M-C., Fenton, R.D., Wilkens, S. and Close, T.J. 2003. The binding of maize DHN1 to lipid vesicles. Gain of structure and lipid specificity. Plant Physiol. 131: 309-316.

    PubMed  Google Scholar 

  • Lee, B., Kin, Y. and Zhu, J-K. 2002. Molecular genetics of plant responses to low temperatures. In: Li, P. and Palva E.T. (Eds.), Plant Cold Hardiness, Gene Regulation and Genetic Engineering. Proceedings of the 6th International Plant Cold Hardiness Seminar, 1–5 July 2001, Helsinki, Finland, p. 294. Kluwer Academic/Plenum Publishers, New York.

    Google Scholar 

  • Laång, V., Heino, P. and Palva, E.T. 1989. Low-temperature acclimation and treatment with exogenous abscisic-acid induce common polypeptides in Arabidopsis thaliana (L) Heynh. Theor. Appl. Genet. 77: 729-734.

    Google Scholar 

  • Laång, V. and Palva, E.T. 1992. The expression of a Rab-related gene, Rab18, is induced by abscisic-acid during the coldacclimation process of Arabidopsis thaliana (L) Heynh. Plant Mol. Biol. 20: 951-962.

    PubMed  Google Scholar 

  • Laång, V. 1993. The role ABA and ABA-induced gene expression in cold acclimation of Arabidopsis thaliana. Ph.D. Dissertation, Uppsala, Swedish University of Agricultural Sciences, Uppsala Genetic Center, Sweden.

    Google Scholar 

  • Mäntylä, E., Laång, V. and Palva, E.T. 1995. Role of abscisicacid in drought-induced freezing tolerance, cold-acclimation, and accumulation of Lti78 and Rab18 proteins in Arabidopsis thaliana. Plant Physiol. 107: 141-148.

    PubMed  Google Scholar 

  • NDong, C., Danyluk, J., Wilson, K.E., Pocock, T., Huner, N.P. and Sarhan, F. 2002. Cold-regulated cereal chloroplast late embryogenesis abundant-like proteins. Molecular characterization and functional analysis. Plant Physiol. 129: 1368-1381.

    PubMed  Google Scholar 

  • Nylander, M., Svensson, J., Palva, E.T. and Welin, B. 2001. Stress-induced accumulation and tissue specific localization of dehydrins in Arabidopsis thaliana. Plant Mol. Biol. 45: 263-279.

    PubMed  Google Scholar 

  • Rinne, P.L.H., Kaikuranta, P.L.M., van der Plas, L.H.W. and van der Schoot, C. 1999. Dehydrins in cold-acclimated apices of birch (Betula pubescens Ehrh.): production, localization and potential role in rescuing enzyme function during dehydration. Planta 209: 377-388.

    PubMed  Google Scholar 

  • Rouse, D., Gehring, C.A. and Parish, R.W. 1992. Structure and sequence of a dehydrin-like gene in Arabidopsis thaliana. Plant Mol. Biol. 19: 531-532.

    PubMed  Google Scholar 

  • Rouse, D.T., Marotta, R. and Parish, R.W. 1996. Promoter and expression studies on an Arabidopsis thaliana dehydrin gene. FEBS Lett. 381: 252-256.

    PubMed  Google Scholar 

  • Sakai, A. and Larcher, W. 1987. Frost Survival of Plants: Responses and adaptation to freezing stress. Springer-Verlag, Berlin.

    Google Scholar 

  • Sankaram, M.B. and Marsh, D. 1993. Protein-lipid interactions with peripheral membrane proteins. In: A. Neuberger and L.L.M. van Deenen (Eds.), New Comprehensive Biochemistry; A. Watts (Ed.), Protein-Lipid Interactions, Elsevier, Amsterdam, pp. 127-162.

    Google Scholar 

  • Seki, M., Narusaka, M., Ishida, J., Nanjo, T., Fujita, M., Oono, Y., Kamiya, A., Nakajima, M., Enju, A., Sakurai, T., Satou, M., Akiyama, K., Taji, T., Yamaguchi-Shinozaki, K., Carninci, P., Kawai, J., Hayashizaki, Y. and Shinozaki, K. 2002. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J. 31: 279-292.

    PubMed  Google Scholar 

  • Sivamani, E., Bahieldin, A., Wraith, J.M., Al-Niemi, T., Dyer, W.E., Ho, T.-H. D. and Qu, R. 2000. Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HV A1 gene. Plant Sci. 155: 1-9.

    PubMed  Google Scholar 

  • Steponkus, P.L., Uemura, M. and Webb, M.S. 1993. A contrast of the cryostability of the plasma membrane of winter rye and spring oat — two species that widely differ in their freezing tolerance and plasma membrane lipid composition. In P.L. Steponkus (Ed.) Advances in Low-Temperature Biology, vol. 2. JAI Press, London, pp. 221-312.

    Google Scholar 

  • Sukumaran, N.P. and Weiser, C.J. 1972. An excised leaflet test for evaluating potato frost tolerance. Hort Sci. 7: 467-468.

    Google Scholar 

  • Svensson, J., Palva, E.T. and Welin, B. 2000. Purification of recombinant Arabidopsis thaliana dehydrins by metal ion affinity chromatography. Prot. Exp. Purif. 20: 169-178.

    Google Scholar 

  • Svensson, J., Ismail, A.M., Palva, E.T. and Close, T.J. 2002. Dehydrins. In: K. B. Storey and J. M. Storey (Eds.), Sensing, Signaling and Cell Adaptation, Elsevier Science B.V., pp. 155-171.

  • Swire-Clark, G.A. and Marcotte Jr., W.F. 1999. The wheat LEA protein Em functions as an osmoprotective molecule in Saccharomyces cerevisae. Plant Mol. Biol. 39: 117-128.

    PubMed  Google Scholar 

  • Thomashow, M.F. 1999. Plant Cold Acclimation: Freezing tolerance genes and regulatory mechanisms. Ann. Rev. Plant Physiol. Plant Mol. Biol. 50: 571-599.

    Google Scholar 

  • Uemura, M., Joseph, R.A. and Steponkus, P.L. 1995. Cold acclimation of Arabidopsis thaliana. Effect on plasma membrane lipid composition and freeze-induced lesions. Plant Physiol. 109: 15-30.

    PubMed  Google Scholar 

  • Vilardell, J., Goday, A., Freire, M.A., Torrent, M., Martinez, M.C., Torne, J.M. and Pages, M. 1990. Gene sequence, developmental expression, and protein phosphorylation of RAB17 in maize. Plant Mol. Biol. 14: 423-432.

    PubMed  Google Scholar 

  • Welin, B.V., Olson, A., Nylander, M. and Palva, E.T. 1994. Characterization and differential expression of Dhn/ Lea/Rab-like genes during cold-acclimation and drought stress in Arabidopsis thaliana. Plant Mol. Biol. 26: 131-144.

    PubMed  Google Scholar 

  • Welin, B.V., Olson, A. and Palva, E.T. 1995. Structure and organization of two closely-related low-temperature-induced Dhn/Lea/Rab-like genes in Arabidopsis thaliana L Heynh. Plant Mol. Biol. 29: 391-395.

    PubMed  Google Scholar 

  • Wisniewski, M., Webb, R., Balsamo, R., Close, T.J., Yu, X.M. and Griffith, M. 1999. Purification, immunolocalization, cryoprotective, and antifreeze activity of PCA60: A dehydrin from peach (Prunus persica). Physiol. Plant 105: 600-608.

    Google Scholar 

  • Xin, Z and Browse, J. 1998. eskimo1 mutants of Arabidopsis are constitutively freezing-tolerant. Proc. Natl. Acad. Sci. USA 95: 7799-7804.

    PubMed  Google Scholar 

  • Xu, D.P., Duan, X.L., Wang, B.Y., Hong, B.M., Ho, T.H.D. and Wu, R. 1996. Expression of a late embryogenesis abundant protein gene, HV A1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol. 110: 249-257.

    PubMed  Google Scholar 

  • Zhang, L., Ohta, A., Takagi, M. and Imai, R. 2000. Expression of plant group 2 and group 3 lea genes in Saccharomyces cerevisiae revealed functional divergence among LEA proteins. J. Biochem. (Tokyo) 127: 611-616.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puhakainen, T., Hess, M.W., Mäkelä, P. et al. Overexpression of Multiple Dehydrin Genes Enhances Tolerance to Freezing Stress in Arabidopsis. Plant Mol Biol 54, 743–753 (2004). https://doi.org/10.1023/B:PLAN.0000040903.66496.a4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PLAN.0000040903.66496.a4

Navigation