Skip to main content
Log in

The Archaeal Concept and the World it Lives in: A Retrospective

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The present retrospective concerns the discovery and development of the archaea, the so-called 'third form of life' that no one anticipated and many did not, and still do not want. In its birth pangs, which the archaea had a plenty, the concept encountered biology unmasked; for it ran up against some of the key struts in the 20th century biological edifice. Consequently, the history of the development of the archaeal concept provides an excellent window on certain of the weaknesses in the 20th century biology paradigm, weaknesses that have now led that paradigm to a conceptual dead end. On the other hand, the archaeal concept has also provided us one of the pillars on which a new holistic paradigm for biology can be built. So, it would seem of value to retrace some of the twists and turns in the history of the development of the archaeal concept. Given my position vis-à-vis the archaea, my account will be a personal one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bell SD and Jackson SP (2001) Mechanism and regulation of transcription in archaea. Curr Opin Microbiol 4: 208–213

    Article  PubMed  CAS  Google Scholar 

  • Bohm D (1969) Some remarks on the notion of order. In: Waddington CH (ed) Towards a Theoretical Biology: 2.Sketches, pp 18–40. Edinburgh Press, Edinburgh

    Google Scholar 

  • Brock TD (1978) Thermophilic Microorganisms and Life at High Temperatures, p 174. Springer-Verlag, Berlin

    Google Scholar 

  • Cavalier-Smith T (2002) The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification. Int J Syst Evol Microbiol 52: 7–76

    PubMed  CAS  Google Scholar 

  • Chatton E (1937) Titres et travaux scientifiques. Sete, Sotano

  • Crick FHC (1958) The biological replication of macromolecules. Symp Soc Exp Biol 12: 138–163

    PubMed  CAS  Google Scholar 

  • DeLong EF, Wickham GS and Pace NR (1989) Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science 243: 1360–1363

    PubMed  CAS  Google Scholar 

  • Fitz-Gibbon ST and House CH (1999) Whole genome-based phylogenetic analysis of free-living microorganisms. Nucleic Acids Res 27: 4218–4222

    Article  PubMed  CAS  Google Scholar 

  • Fox GE, Pechman KR and Woese CR (1977a) Comparative cataloging of 16S ribosomal ribonucleic acid: molecular approach to procaryotic systematics. Int J Syst Bacteriol 27: 44–57

    Article  CAS  Google Scholar 

  • Fox GE, Magrum LJ, Balch WE, Wolfe RS and Woese CR (1977b) Classification of methanogenic bacteria by 16S ribosomal RNA characterization. Proc Natl Acad Sci USA 74: 4537–4541

    Article  PubMed  CAS  Google Scholar 

  • Fox GE, Stackebrandt E, Hespell RB, Gibson J, Maniloff J, Dyer TA, Wolfe RS, Balch WE, Tanner RS, Magrum LJ, Zablen LB, Blakemore R, Gupta R, Bonen L, Lewis BJ, Stahl DA, Luehrsen KR, Chen KN and Woese CR (1980) The phylogeny of prokaryotes. Science 209: 457–463

    PubMed  CAS  Google Scholar 

  • Gamow G (1954) Possible relations between deoxyribonucleic acid and protein structures. Nature 173: 318

    Article  CAS  Google Scholar 

  • Gilbert SF, Opitz JMand Raff RA (1996) Resynthesizing evolutionary and developmental biology. Dev Biol 173: 357–372

    Article  PubMed  CAS  Google Scholar 

  • Graham DE, Overbeek R, Olsen GJ and Woese CR (2000) An archaeal genomic signature. Proc Natl Acad Sci USA 97: 3304–3308

    Article  PubMed  CAS  Google Scholar 

  • Gupta RS (2003) Evolutionary relationships among photosynthetic bacteria. Photosynth Res 76: 173–183

    Article  PubMed  CAS  Google Scholar 

  • Gupta RS and GB Golding (1993) Evolution of HSP70 gene and its implications regarding relationships between archaebacteria, eubacteria, and eukaryotes. J Mol Evol 37: 573–582

    Article  PubMed  CAS  Google Scholar 

  • Huet J, Schnabel R, Sentenac A and Zillig W(1983) Archaebacteria and eukaryotes possess DNA-dependent RNA polymerases of a common type. EMBO J 2: 1291–1294

    PubMed  CAS  Google Scholar 

  • Kandler O and Hippe H (1977) Lack of peptidoglycan in the cell walls of Methanosarcina barkeri. Arch Microbiol 113: 57–60

    Article  PubMed  CAS  Google Scholar 

  • Langer D, Hain J, Thuriaux P and Zillig W (1995) Transcription in archaea: similarity to that in Eucarya. Proc Natl Acad Sci USA 92: 5768–5772

    Article  PubMed  CAS  Google Scholar 

  • Olsen GJ and Woese CR (1996) Lessons from an archaeal genome: what are we learning from Methanococcus jannaschii? Trends Genet 12: 377–379

    Article  PubMed  CAS  Google Scholar 

  • Olsen GJ, Lane DJ, Giovannoni SJ, Pace NR and Stahl DA (1986) Microbial ecology and evolution: a ribosomal RNA approach. Ann Rev Microbiol 40: 337–365

    Article  CAS  Google Scholar 

  • Pennisi E (1998)Genome data shake tree of life. Science 280: 672–674

    Article  PubMed  CAS  Google Scholar 

  • Pennisi E (1999) Is it time to uproot the tree of life? Science 284: 1305–1307

    Article  PubMed  CAS  Google Scholar 

  • Reeve JN, Sandman K and Daniels CJ (1997) Archaeal histones, nucleosomes, and transcription initiation. Cell 89: 999–1002

    Article  PubMed  CAS  Google Scholar 

  • Sanger F and Thompson EOP (1953) The amino-acid sequence in the glycyl chain of insulin. Biochem J 53: 353–374

    PubMed  CAS  Google Scholar 

  • Sanger F and Tuppy H (1951) The amino-acid sequence in the phenylalanyl chain of insulin. Biochem J 49: 481–490

    PubMed  CAS  Google Scholar 

  • Sanger F, Brownlee GG and Barrell BG (1965) A two-dimensional fractionation procedure for radioactive nucleotides. J Mol Biol 13: 373–398

    Article  PubMed  CAS  Google Scholar 

  • Snel B, Bork P and Huynen M (1999) Genome phylogeny based on gene content. Nat Genet 21: 17–25

    Article  CAS  Google Scholar 

  • Stanier RY and van Niel CB (1962) The concept of a bacterium. Arch Mikrobiol 42: 17–35

    Article  PubMed  CAS  Google Scholar 

  • Steitz JA (1978) Methanogenic bacteria. Nature 273: 10

    Article  PubMed  CAS  Google Scholar 

  • Tornabene TG and Langworthy TA (1979) Diphytanyl and dibiphytanyl glycerol ether lipids of methanogenic archaebacteria. Science 203: 51–53

    PubMed  CAS  Google Scholar 

  • Woese CR (1982) Archaebacteria and cellular origins. An overview. Zbl Bakt Hyg I Abt. Orig C 3: 1–17

    Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51: 221–271

    PubMed  CAS  Google Scholar 

  • Woese CR (2001) Translation: in retrospect and prospect. RNA 7: 1055–1067

    Article  PubMed  CAS  Google Scholar 

  • Woese CR, Magrum LJ and Fox GE (1978) Archaebacteria. J Mol Evol 11: 245–251

    Article  PubMed  CAS  Google Scholar 

  • Woese CR, Gupta R, Hahn CM, Zillig Wand Tu J (1984) The phylogenetic relationships of three sulfur dependent archaebacteria. Syst Appl Microbiol 5: 97–105

    PubMed  CAS  Google Scholar 

  • Woese CR, Stackebrandt E, Macke TJ and Fox GE (1985) A phylogenetic definition of the major eubacterial taxa. Syst Appl Microbiol 6: 143–151

    PubMed  CAS  Google Scholar 

  • Woese CR, Olsen GJ, Ibba M and Söll D (2000) Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. Microbiol Mol Biol Rev 64: 202–236

    Article  PubMed  CAS  Google Scholar 

  • Wolfe RS (1992) Biochemistry of methanogenesis. Biochem Soc Symp 58: 41–49

    PubMed  CAS  Google Scholar 

  • Wolfe R (2003) The Archaea: a personal overview of the formative years. In: The Prokaryotes, 3rd edition (in press)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woese, C.R. The Archaeal Concept and the World it Lives in: A Retrospective. Photosynthesis Research 80, 361–372 (2004). https://doi.org/10.1023/B:PRES.0000030445.04503.e6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PRES.0000030445.04503.e6

Navigation