Skip to main content
Log in

SERK Gene Homolog Expression, Polyamines and Amino Acids Associated with Somatic Embryogenic Competence of Ocotea catharinensis Mez. (Lauraceae)

  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

In the present work, we investigate the association of SERK gene homolog expression, polyamines (PAs) and amino acids related to putrescine synthesis (arginine and ornithine) and polyamines degradation (γ-aminobutiric acid) or S-adenosylmethionine synthesis (methionine), with the embryogenic competence in cell aggregates of Ocotea catharinensis Mez. (Lauraceae). Cell aggregates were cultivated during 7 days in woody plant medium (WPM) supplemented with 20 g l−1 sucrose, 22 g l−1 sorbitol, 400 mg l−1 glutamine and 2 g l−1 phytagel, and in Murashige and Skoog medium (MS) supplemented 20 g l−1 sucrose, 3 g l−1 activated charcoal, 2 g l−1Phytagel with and without 40 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D). The cell aggregates cultivated in MS plus 2,4-D and in the WPM medium showed hybridization with a SERK gene homolog both in northern and in situ hybridization experiments. Cell aggregates cultivated in an MS basal medium, without 2,4-D, did not exhibit any hybridization signal to the SERK probe used, thus they were considered potentially non-embryogenic cells. In all three media only free polyamines were detected. The higher putrescine levels occurring in WPM callus were associated with a higher arginine and ornithine content, lower γ-aminobutiric acid level, and SERK homolog expression. Putrescine was also the major polyamine in the MS medium. In the MS plus 2,4-D medium, the levels of putrescine, spermidine and spermine were similar. Spermine exhibited similar and the lowest levels in all media. Spermidine intermediary levels occurred in the WPM and MS media. In cell aggregates methionine level was lowest in the MS plus 2,4-D medium, but similar in the MS and WPM media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Altman A (1989) Polyamines and plant hormones. In: Bachrach U & Heimer VM (eds) The Physiology of Polyamines, Vol. 2 (pp. 122–145). CRC Press, Boca Raton, FL, USA

    Google Scholar 

  • Altman A, Nadel B, Falash Z & Levin N (1990) Somatic embryo-genesis in celery: induction, control and changes in polyamines and proteins. In: Nijkamp HJJ, Van Der Plas LHW & Van Aartrijk J (eds) Progress in Plant Cellular and Molecular Biology (pp. 454–459). Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Andersen SI, Bastola DR & Minocha SC (1998) Metabolism of polyamines in transgenic cells of carrot expressing a mouse ornithine decarboxylase cDNA. Plant Physiol. 116: 299–307

    PubMed  Google Scholar 

  • Astarita LV, Handro W & Floh EIS (2003) Changes in polyamines content associated with zygotic embryogenesis in the Brazilian pine, Araucaria angustifolia (Bert.) O. Ktze. Rev. Bras. Bot. 2: 163–168

    Google Scholar 

  • Astarita LV, Floh EIS & Handro W (2004) Free amino acid, protein and water content changes associated with seed development in Araucaria angustifolia. Biol. Plant. 47: 53–59

    Google Scholar 

  • Bais HP & Ravishankar GA (2002) Role of polyamines in the ontogeny of plant and their biotechnology applications. Plant Cell Tiss. Org. Cult. 69: 1–34

    Google Scholar 

  • Bajaj S & Rajam MV (1995) Efficient plant regeneration from long-term callus cultures of rice by spermidine. Plant Cell Rep. 14: 717–720

    Google Scholar 

  • Bastola DR & Minocha SC (1995) Increased putrescine biosynthesis through transfer of mouse ornithine decarboxylase cDNA in carrot promotes somatic embryogenesis. Plant Physiol. 109: 63–71

    PubMed  Google Scholar 

  • Becraft PW (1998) Receptor kinases in plant development. Trends Plant Sci. 3: 384–388

    Google Scholar 

  • Boucherau A, Aziz A, Larher F & Martin-Tanguy J (1999) Polyamines and environmental challenges: recent development. Plant Sci. 140: 103–125

    Google Scholar 

  • Bradley PM, El-Fiji F & Giles KL (1984) Polyamines and arginine affect somatic embryogenesis of Daucus carota. Plant Sci. Lett. 34: 397–401

    Google Scholar 

  • Claparols I, Santos MA & Torné JM (1993) Influence of some exogenous amino acids on the production of maize embryogenic callus and endogenous amino acid content. Plant Cell Tiss. Org. Cult. 34: 1–11

    Google Scholar 

  • Dornelas MC, Van Lammeren AA & Kreis M (2000) Arabidopsis thaliana SHAGGY-related protein kinases (AtSK11 and 12) function in perianth and gynoecium development. Plant J. 21: 419–429

    PubMed  Google Scholar 

  • Dudits D, Gyorgyey J, Bogre L & Bakó L (1995) Molecular biology of somatic embryogenesis. In: Thorpe TA (ed) In Vitro Embryo-genesis in Plants (pp. 267–308). Kluwer Academic Publisher, Dordrecht, The Netherlands

    Google Scholar 

  • Fehér A, Pasternak TA & Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tiss. Org. Cult. 74: 201–228

    Google Scholar 

  • Feirer RP, Mignon G & Litway JD (1984) Arginine descarboxylase and polyamines required for embryogenesis in the wild carrot. Science 223: 1433–1435

    Google Scholar 

  • Galston AW & Flores HE (1991) Polyamines and plant morpho-genesis. In: Slocum RD & Flores HE (eds) Biochemistry and Physiology of Polyamines in Plants (pp. 175–186). CRC Press, Boca Raton, FL, USA

    Google Scholar 

  • Haussman JF, Kevers C, Evers D & Gaspar T (1997) Conversion of putrescine in aminobutyric acid, an essential pathway for root formation by poplar shoots in vitro. In: Altman A & Waisel Y (eds) Biology of Root Formation and Development. (pp. 133–140). Plenum Press, New York, USA

    Google Scholar 

  • Hecht V, Vielle-Calzada JP, Hartog MV, Schmidt EDL, Boutilier K, Grossniklaus U & De Vries SC (2001) The Arabidopsis somatic embryogenesis receptor kinase 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol. 127: 803–816

    PubMed  Google Scholar 

  • Kakkar RK & Sawhney VK (2002) Polyamine research in plants -- a changing perspective. Physiol. Plant. 116: 281–292

    Google Scholar 

  • Kakkar RK, Nagar PK, Ahuja PS & Raí VK (2000) Polyamines and plant morphogenesis. Biol. Plan 43: 1–11

    Google Scholar 

  • Kevers C, Le Gal N, Monteiro M, Dommes J & Gaspar T (2000) Somatic embryogenesis of Panax ginseng in liquid cultures: a role for polyamines and their metabolic pathways. Plant Growth Regulat. 31: 209–214

    Google Scholar 

  • Kong L, Atree SM & Fowke LC (1998) Effects of polyethylene glycol and methylglyoxal bis(guanylhydrazone) on endogenous polyamine levels and somatic embryo maturation in white spruce (Picea glauca). Plant Sci. 133: 211–220

    Google Scholar 

  • Lee TM, Lur HS & Chu C (1997) Role of abscisic acid in chilling tolerance of rice (Oryza sativa L.) seedlings. II. Modulation of free polyamine levels. Plant Sci. 126: 1–10

    Google Scholar 

  • Lloyd G & McCown B (1981) Commercially feasible micro-propagation of mountain laurel, Kalmia latifolia, by use of shoot tip culture. Int. Plant Prop. Soc. Proc. 30: 421–427

    Google Scholar 

  • Martin-Tanguy J (1997) Conjugated polyamines and reproductive development: biochemical, molecular, and physiological approaches. Physiol. Plant. 100: 675–688

    Google Scholar 

  • McCabe PF, Valentine TA, Forsberg LS & Pennell RI (1997) Soluble signals from cells identified at the cell wall establish a developmental pathway in carrot. Plant Cell. 9: 2225–2241

    PubMed  Google Scholar 

  • Minocha SC & Minocha R (1995) Roles of polyamines in somatic embryogenesis. In: Bajaj YPS (ed) Biotechnology in Agriculture and Forestry, Vol. 30. Somatic Embryogenesis and Synthetic Seeds 1. (pp. 53–70). Springer-Verlag, Berlin, Germany

    Google Scholar 

  • Minocha R, Smith DR, Reeves C, Steele KD & Minocha SC (1999) Polyamine levels during the development of zygotic and somatic embryos of Pinus radiata. Physiol. Plant. 105: 155–164

    Google Scholar 

  • Mordhost AP, Toonen MAJ & De Vries SC (1997) Plant embryo-genesis. Crit. Rev. Plant Sci. 16: 535–576

    Google Scholar 

  • Moura-Costa PH, Viana AM & Mantell SH (1993) In vitro plantlet regeneration of Ocotea catharinensis Mez. (Lauraceae), an endangered forest tree of S. Brasil. Plant Cell Tiss. Org. Cult. 35: 279–286

    Google Scholar 

  • Murashigue T & Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant. 15: 473–497

    Google Scholar 

  • Nolan KE, Irwanto RR & Rose RJ (2003) Auxin up-regulates MtSERK1 expression in both Medicago trunculata root-forming and embryogenic cultures. Plant Physiol. 133: 218–230

    PubMed  Google Scholar 

  • Pennel RI, Janniche L, Scofield GN, Booij H, de Vries SC & Roberts K (1992) Identification of a transitional cell state in the developmental pathway to carrot embryogenesis. J. Cell Biol. 119: 1371–1380

    PubMed  Google Scholar 

  • Rajesh MK, Radha E, Karun A & Parthasarathy VA (2003) Plant regeneration from embryo-derived callus of oil palm -- the effect of exogenous polyamines. Plant Cell Tiss. Org. Cult. 75: 41–47

    Google Scholar 

  • Rey M, Diaz-Sala C & Rodriguez R (1994) Exogenous polyamines improve rooting of hazel microshoots. Plant Cell Tiss. Org. Cult. 36: 303–308

    Google Scholar 

  • Sambrook J, Fritsch EF & Maniatis T (1989) Molecular Cloning, A Laboratory Manual, 3 vols. Cold Spring Harbour Laboratory Press, Cold Spring Harbour, NY, USA

    Google Scholar 

  • Santos M, Clapatols I & Torné JM (1993) Effect exogenous arginine, ornithine, methionine and γ-amino butyric acid on maize (Zea mays L.) embryogenesis, and polyamine content. J. Plant Physiol. 142: 74–80

    Google Scholar 

  • Schmidt EDL, Guzzo F, Toonen MAJ & De Vries SC (1997) A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development 124: 2049–2062

    PubMed  Google Scholar 

  • Shen H & Galston AW (1985) Correlations between polyamine ratios and growth patterns in seedling roots. Plant Growth Regulat. 3: 353–363

    Google Scholar 

  • Silveira V, Floh EIS, Handro W & Guerra MP (2004) Effect of plant growth regulators on the cellular growth and levels of intracellular protein, starch and polyamines in embryogenic suspension cultures of Pinus taeda. Plant Cell Tiss. Org. Cult. 76: 53–60

    Google Scholar 

  • Slocum RD & Flores HE (eds) (1991) Biochemistry and Physiology of Polyamines in Plants. CRC Press, Boca Raton, FL, USA

    Google Scholar 

  • Somleva MN, Scmidt EDL & de Vries SC (2000) Embryogenic cells in Dactylis glomeranta L. (Poaceae) explants identified by cell tracking and by SERK expression. Plant Cell Rep. 19: 718–726

    Google Scholar 

  • Tiburcio AF, Figueras X, Claparols I, Santos M & Torne JM (1990) Improved plant regeneration in maize callus cultures after pre-treatment with DL-alpha-difluoromethylarginine. Plant Cell Tiss. Org. Cult. 27: 27–32

    Google Scholar 

  • Toonen MAJ, Schmidt EDL, Van Kammen A & De Vries SC (1997a) Promotive and inhibitory effects of diverse ara-binogalactan proteins on Daucus carota L. somatic embryogenesis. Planta 203: 188–195

    Google Scholar 

  • Toonen MAJ, Verhees JA, Schmidt EDL, Van Kammen A & De Vries SC (1997b) AtLTP1 luciferase expression during carrot somatic embryogenesis. Plant. J. 12: 1213–1221

    PubMed  Google Scholar 

  • Vain P, Flament P & Soudain P (1989) Role of ethylene in embryo-genic callus initiation and regeneration in Zea mays L. J. Plant Physiol. 135: 537–540

    Google Scholar 

  • Viana AM (1998) Somatic embryogenesis in Ocotea catharinensis Mez (Lauraceae). In: Mantell SH, Bruns S, Tragardh C & Viana AM (eds) Recent Advances in Biotechnology for Conservation and Management (pp. 244–253). International Foundation for Science, Stockholm, Sweden

    Google Scholar 

  • Viana AM & Mantell H (1999) Somatic embryogenesis of Ocotea catharinensis: an endangered tree of the Mata Atlântica (S. Brazil). In: Jain S, Gupta P & Newton R (eds) Somatic Embryogenesis in Woody Plants, Vol. 5 (pp. 3–30). Kluwer Publishers, The Netherlands

    Google Scholar 

  • Viana AM, Mazza MC & Mantell SH (1999) Plant conservation biotechnology: applications of biotechnology for the conservation and sustainable exploitation of plants from Brazilian rain forest. In: Benson E (ed) Plant Conservation Biotechnology (pp. 277–299). University of Abertay, Dundee, UK

    Google Scholar 

  • Yadav JS & Rajam MV (1997) Spatial distribution of free and conjugated polyamines in leaves of Solanum melongena L. associated with differential morphogenetic capacity: efficient somatic embryogenesis with putrescine. J. Exp. Bot. 48: 1537–1545

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santa-Catarina, C., Hanai, L.R., Dornelas, M.C. et al. SERK Gene Homolog Expression, Polyamines and Amino Acids Associated with Somatic Embryogenic Competence of Ocotea catharinensis Mez. (Lauraceae). Plant Cell, Tissue and Organ Culture 79, 53–61 (2004). https://doi.org/10.1023/B:TICU.0000049450.56271.f0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:TICU.0000049450.56271.f0

Navigation