Skip to main content
Log in

Vibrations in Microtubules

  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Vibrations in microtubules and actin filaments are analysed using amethod similar to that employed for description of lattice vibrationsin solid state physics. The derived dispersion relations show thatvibrations in microtubules can have optical and acoustical branches.The highest frequency of vibrations in microtubules and in actinfilaments is of the order of 108 Hz. Vibrations are polar andinteraction with surroundings is mediated by the generatedelectromagnetic field. Supply of energy from hydrolysis of guanosinetriphosphate (GTP) in microtubules and of adenosine triphosphate(ATP) in actin filaments may excite the vibrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mandelkow, E., Mandelkow, E.-M., Hotani, H., Hess, B. and Müller, S.C.: Spatial Patterns from Oscillating Microtubules, Science 246(1989), 1291–1293.

    Google Scholar 

  2. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. and Watson, J.D.: Molecular Biology of the Cell. York & London: Garland Publishing, 1994.

    Google Scholar 

  3. Satarić, M. V., Tuszyński, J.A., Hameroff, S. and Zakula, R.B.: Microtubules and Their Role in Neuromolecular Computing, Neural Network World 4(1994), 281–294.

    Google Scholar 

  4. Tuszyński, J.A., Hameroff, S., Satarić, M.V., Trpisová, B. and Nip, M.L.A.: Ferroelectric Behavior in Microtubule Dipole Lattices: Implications for Information Processing, Signaling and Assembly/Disassembly, J. theor. Biol. 174(1995), 371–380.

    Google Scholar 

  5. Tuszyński, J.A., Trpisová, B. and Sept, D.: From Erratic to Coherent Behaviour in the Assembly of Microtubules, Neural Network World 5(1995), 675–688.

    Google Scholar 

  6. Caplow, M., Ruhlen, R.L. and Shanks, J.: The Free Energy for Hydrolysis of a Microtubule-Bound Nucleotide Triphosphate Is Near Zero: All of the Free Energy for Hydrolysis Is Stored in the Microtubule Lattice, J. Cell Biol. 127(1994), 779–788.

    Google Scholar 

  7. Dekker, J.A.: Solid State Physics. Englewood Cliffs: Prentice-Hall, 1957.

    Google Scholar 

  8. Käs, J., Strey, H., Tang, J.X., Finger, D., Ezzell, R., Sackmann, E. and Janmey, P.A.: F-Actin, a Model Polymer for Semiflexible Chains in Dilute, Semidilute, and Liquid Crystalline Solutions, Biophys. J. 70(1996), 609–625.

    Google Scholar 

  9. Sato, M., Schwartz, W.H., Selden, S.Ch. and Pollard, T.D.: Mechanical Properties of Brain Tubulin and Microtubules, J. Cell Biol. 106(1988), 1205–1211.

    Google Scholar 

  10. Janmey, P.A., Euteneuer, U., Traub, P. and Schliwa, M.: Viscoelastic Properties of Vimentin Compared with Other Filamentous Biopolymer Networks, J. Cell Biol. 113(1991), 155–160.

    Google Scholar 

  11. Leterrier, J.F., Käs, J., Hartwig, J., Vegners, R. and Janmey, P.A.: Mechanical Effects of Neuro-filament Cross-bridges, The J. Biol. Chem. 271(1996), 15687–15694.

    Google Scholar 

  12. Janmey, P.A.: Coping with Cellular Stress: The Mechanical Resistance of Porous Protein Networks, Biophys. J. 71(1996), 3–7.

    Google Scholar 

  13. MacKintosh, F.C., Käs, J. and Janmey, P.A.: Elasticity of Semiflexible Biopolymer Networks, Phys. Rev. Lett. 75(1995), 4425–4428.

    Google Scholar 

  14. Caplow, M. and Shanks, J.: Induction of Microtubule Catastrophe by Formation of Tubulin–GDP and Apotubulin Subunits at Microtubule Ends. Biochemistry 34(1995), 15732–15741.

    Google Scholar 

  15. Caplow, M. and Shanks, J.: Evidence that a Single Monolayer Tubulin–GTP Cap Is Both Necessary and Sufficient to Stabilize Microtubules, Molec. Biol. Cell 7(1996), 663–675.

    Google Scholar 

  16. Satarić, M.V., Tuszyński, J.A. and Žakula, R.B.: Kinklike excitations as an energy-transfer mechanism in microtubules, Phys. Rev. E 48(1993), 589–597.

    Google Scholar 

  17. Fröhlich, H.: Bose Condensation of Strongly Excited Longitudinal Electric Modes, Phys. Lett. 26A(1968), 402–403.

    Google Scholar 

  18. Fröhlich, H.: Long-range coherence and energy storage in biological systems, Int. J. Quant. Chem. II(1968), 641–649.

    Google Scholar 

  19. Fröhlich, H.: The Biological Effects of Microwaves and Related Questions. Advances in Electronics and Electron Phys. 53(1980), 85–152.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pokorný, J., Jelínek , F., Trkal, V. et al. Vibrations in Microtubules. Journal of Biological Physics 23, 171–179 (1997). https://doi.org/10.1023/A:1005092601078

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005092601078

Navigation