Skip to main content
Articles

Differences Between Intention-Based and Stimulus-Based Actions

Published Online:https://doi.org/10.1027/0269-8803.20.1.9

Abstract: Actions carried out in response to exogenous stimuli and actions selected endogenously on the basis of intentions were compared in terms of their behavioral (movement timing) and electrophysiological (EEG) profiles. Participants performed a temporal bisection task that involved making left or right key presses at the midpoint between isochronous pacing signals (a sequence of centrally-presented letters). In separate conditions, the identity of each letter either (1) prescribed the location of the subsequent key press response (stimulus-based) or (2) was determined by the location of the preceding key press, in which case participants were instructed to generate a random sequence of letters (intention-based). The behavioral results indicated that stimulus-based movements occurred earlier in time than intention-based movements. The EEG results revealed that activity reflecting stimulus evaluation and response selection was most pronounced in the stimulus-based condition, whereas activity associated with the general readiness to act was strongest in the intention-based condition. Together, the behavioral and electrophysiological findings provide evidence for two modes of action planning, one mediated by stimulus-response bindings and the other by action-effect bindings. The comparison of our results to those of an earlier study (Waszak et al., 2005) that employed spatially congruent visuo-motor mappings rather than symbolic visuo-motor mappings suggests that intention-based actions are controlled by similar neural pathways in both cases, but stimulus-based actions are not.

References

  • Allport, D.A. (1987). Selection for action: Some behavioral and neurophysiological considerations of attention and action. In H. Heuer & A.F. Sanders (Eds.),Perspectives on perception and action (pp. 395-419). Hillsdale, NJ: Erlbaum First citation in articleGoogle Scholar

  • Aschersleben, G. (2002). Temporal control of movements in sensorimotor synchronization. Brain and Cognition, 48, 66– 79 First citation in articleCrossrefGoogle Scholar

  • Cisek, P. , Crammond, D.J. , Kalaska, J.F. (2003). Neural activity in primary motor and dorsal premotor cortex in reaching tasks with the contralateral versus ipsilateral arm. Journal of Neurophysiology, 89, 922– 942 First citation in articleCrossrefGoogle Scholar

  • Deecke, L. , Lang, W. (1990). Movement-related potentials and complex actions: Coordinating role of the supplementary motor area. In J.C. Eccles & O. Creutzfeldt (Eds.),The principles of design and operation of the brain (pp. 303-336). Berlin: Springer-Verlag First citation in articleGoogle Scholar

  • Desimone, R. , Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193– 222 First citation in articleCrossrefGoogle Scholar

  • Elsner, B. , Hommel, B. (2001). Effect anticipation and action control. Journal of Experimental Psychology: Human Perception & Performance, 27, 229– 240 First citation in articleCrossrefGoogle Scholar

  • Fogassi, L. , Gallese, V. , Buccino, G. , Craighero, L. , Fadiga, L. , Rizzolatti, G. (2001). Cortical mechanism for the visual guidance of hand grasping movements in the monkey: A reversible inactivation study. Brain, 124, 571– 586 First citation in articleCrossrefGoogle Scholar

  • Frith, C.D. (1992). The cognitive neuropsychology of schizophrenia . Hillsdale, NJ: Erlbaum First citation in articleGoogle Scholar

  • Frith, C.D. (2000). The role of the dorsolateral prefrontal cortex in the selection of action. In S. Monsell & J. Driver (Eds.),Control of cognitive processes. Attention and performance XVIII. Cambridge, MA: MIT Press First citation in articleGoogle Scholar

  • Gallese, V. , Murata, A. , Kaseda, M. , Niki, N. , Sakata, H. (1994). Deficit of hand preshaping after muscimol injection in monkey parietal cortex. Neuroreport, 5, 1525– 1529 First citation in articleCrossrefGoogle Scholar

  • Goldberg, G. (1985). Supplementary motor area structure and function: Review and hypotheses. Behavioral & Brain Sciences, 8, 567– 616 First citation in articleCrossrefGoogle Scholar

  • Gratton, G. , Coles, M.G.H. , Donchin, E. (1983). A new method for offline removal of ocular artifact. Electroencephalography and Clinical Neurophysiology, 55, 468– 484 First citation in articleCrossrefGoogle Scholar

  • Gratton, G. , Coles, M.G.H. , Sirevaag, E.J. , Eriksen, C.W. , Donchin, E. (1988). Pre- and poststimulus activation of response channels: A psychophysiological analysis. Journal of Experimental Psychology: Human Perception and Performance, 14, 331– 344 First citation in articleCrossrefGoogle Scholar

  • Greenwald, A.G. (1970). Sensory feedback mechanisms in performance control: With special reference to the ideo-motor mechanism. Psychological Review, 77, 73– 99 First citation in articleCrossrefGoogle Scholar

  • Haggard, P. , Aschersleben, G. , Gehrke, J. , Prinz, W. (2002). Action, binding, and awareness. In W. Prinz & B. Hommel (Eds.), Common mechanisms in perception and action: Attention and performance, vol. XIX(pp. 266-285). Oxford: Oxford University Press First citation in articleGoogle Scholar

  • Haggard, P. , Clark, S. , Kalogeras, J. (2002). Voluntary action and conscious awareness. Nature Neuroscience, 5, 382– 385 First citation in articleCrossrefGoogle Scholar

  • Haggard, P. , Eimer, M. (1999). On the relation between brain potentials and the awareness of voluntary movements. Experimental Brain Research, 126, 128– 133 First citation in articleCrossrefGoogle Scholar

  • Hommel, B. (2003). Acquisition and control of voluntary action. In S. Maasen, W. Prinz, & G. Roth (Eds.),Voluntary action: Brains, minds, and sociality (pp. 34-48). Oxford: Oxford University Press First citation in articleGoogle Scholar

  • Hommel, B. , Müsseler, J. , Aschersleben, G. , Prinz, W. (2001). The theory of event coding (TEC). A framework for perception and action planning. Behavioral and Brain Sciences, 24, 849– 937 First citation in articleCrossrefGoogle Scholar

  • Hommel, B. , Pösse, B. , Waszak, F. (2000). Contextualization in perception and action. Psychologica Belgica, 40, 227– 245 First citation in articleGoogle Scholar

  • Iacoboni, M. , Woods, R.P. , Mazziotta, J.C. (1996). Brain-behavior relationships: Evidence from practice effects in spatial stimulus-response compatibility. Journal of Neurophysiology, 76, 321– 331 First citation in articleGoogle Scholar

  • Jahanshahi, M. , Frith, C.D. (1998). Willed action and its impairments. Cognitive Neuropsychology, 15, 483– 533 First citation in articleCrossrefGoogle Scholar

  • James, W. (1890). Principles of psychology . New York: Holt First citation in articleCrossrefGoogle Scholar

  • Koch, I. , Kunde, W. (2002). Verbal response-effect compatibility. Memory & Cognition, 30, 1297– 1303 First citation in articleCrossrefGoogle Scholar

  • Kornhuber, H.H. , Deecke, L. (1965). Hirnpotentialänderungen bei Willkürbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und reafferente Potentiale. [Brain potential changes during voluntary and passive movements in humans: The readiness potential and reafferent potentials] Pflügers Archiv für die gesamte Physiologie des Menschen und der Tiere, 284, 1– 17 First citation in articleGoogle Scholar

  • Kunde, W. (2001). Response-effect compatibility in manual choice reaction tasks. Journal of Experimental Psychology: Human Perception and Performance, 27, 387– 394 First citation in articleCrossrefGoogle Scholar

  • Libet, B. (1985). Unconscious cerebral initiative and the role of unconscious will in voluntary action. The Behavioral and Brain Sciences, 8, 529– 566 First citation in articleCrossrefGoogle Scholar

  • Libet, B. , Gleason, C.A. , Wright, E.W. , Pearl, D.K. (1983). Time of conscious intention to act in relation to onset of cerebral activity (readiness potential). The unconscious initiation of a freely voluntary act. Brain, 106, 623– 642 First citation in articleCrossrefGoogle Scholar

  • Logan, G.D. (1988). Toward an instance theory of automatization. Psychological Review, 95, 492– 527 First citation in articleCrossrefGoogle Scholar

  • Lotze, R.H. (1852). Medizinische Psychologie oder die Physiologie der Seele . [Medical psychology or physiology of the mind]. Leipzig: Weidmann'sche Buchhandlung First citation in articleGoogle Scholar

  • Luppino, G. , Murata, A. , Govoni, P. , Matelli, M. (1999). Largely segregated parietofrontal connections linking rostral intraparietal cortex (areas AIP and VIP) and the ventral premotor cortex (areas F5 and F4). Experimental Brain Research, 128, 181– 187 First citation in articleCrossrefGoogle Scholar

  • Passingham, R.E. (1985). Memory of monkeys (Macaca mulatta) with lesions in prefrontal cortex. Behavioral Neuroscience, 99, 3– 21 First citation in articleCrossrefGoogle Scholar

  • Passingham, R.E. , Toni, I. , Rushworth, M.F. (2000). Specialisation within the prefrontal cortex: The ventral prefrontal cortex and associative learning. Experimental Brain Research, 133, 103– 113 First citation in articleCrossrefGoogle Scholar

  • Praamstra, P. , Oostenveld, R. (2003). Attention and movement-related motor cortex activation: A high-density EEG study of spatial stimulus-response compatibility. Cognitive Brain Research, 16, 309– 322 First citation in articleCrossrefGoogle Scholar

  • Prinz, W. (1987). Ideo-motor action. In H. Heuer & A.F. Sanders (Eds.),Perspectives on perception and action (pp. 47-76). Hillsdale, NJ: Erlbaum First citation in articleGoogle Scholar

  • Prinz, W. (1997). Perception and action planning. European Journal of Cognitive Psychology, 9, 129– 154 First citation in articleCrossrefGoogle Scholar

  • Rizzolatti, G. , Camarda, R. , Fogassi, L. , Gentilucci, M. , Luppino, G. , Matelli, M. (1988). Functional organization of inferior area 6 in the macaque monkey. II. Area F5 and the control of distal movements. Experimental Brain Research, 71, 491– 507 First citation in articleCrossrefGoogle Scholar

  • Sakata, H. , Taira, M. , Murata, A. , Mine, S. (1995). Neural mechanisms of visual guidance of hand action in the parietal cortex of the monkey. Cerebral Cortex, 5, 429– 438 First citation in articleCrossrefGoogle Scholar

  • Spence, S.A. , Brooks, D.J. , Hirsch, S.R. , Liddle, P.F. , Meehan, J. , Grasby, P.M. (1997). A PET study of voluntary movement in schizophrenic patients experiencing passivity phenomena (delusions of alien control). Brain, 120, 1997– 2011 First citation in articleCrossrefGoogle Scholar

  • Thut, G. , Hauert, C.A. , Viviani, P. , Morand, S. , Spinelli, L. , Blanke, O. , Landis, T. , Michel, C. (2000). Internally driven vs. externally cued movement selection: A study on the timing of brain activity. Cognitive Brain Research, 9, 261– 269 First citation in articleCrossrefGoogle Scholar

  • Toni, I. , Rushworth, M.F. , Passingham, R.E. (2001). Neural correlates of visuomotor associations: Spatial rules compared with arbitrary rules. Experimental Brain Research, 141, 359– 369 First citation in articleCrossrefGoogle Scholar

  • Verleger, R. , Jaskowski, P. , Wascher, E. (2005). Evidence for an integrative role of P3b in linking reaction to perception. Journal of Psychophysiology, 19, 165– 181 First citation in articleLinkGoogle Scholar

  • Wascher, E. , Reinhard, M. , Wauschkuhn, B. , Verleger, R. (1999). Spatial S-R compatibility with centrally presented stimuli: An event-related asymmetry study on dimensional overlap. Journal of Cognitive Neuroscience, 11, 214– 229 First citation in articleCrossrefGoogle Scholar

  • Wascher, E. , Wauschkuhn, B. (1996). The interaction of stimulus- and response-related processes measured by event-related lateralizations of the EEG. Electroencephalography and Clinical Neurophysiology, 99, 149– 162 First citation in articleCrossrefGoogle Scholar

  • Waszak, F. , Hommel, B. , Allport, D.A. (2003). Task-switching and long-term priming: Role of episodic stimulus-task bindings in task-shift costs. Cognitive Psychology, 46, 361– 413 First citation in articleCrossrefGoogle Scholar

  • Waszak, F. , Wascher, E. , Keller, P. , Koch, I. , Aschersleben, G. , Rosenbaum, D. , Prinz, W. (2005). Intention-based and stimulus-based mechanisms in action selection. Experimental Brain Research, 162, 346– 356 First citation in articleCrossrefGoogle Scholar

  • Wegner, D.M. (2002). The illusion of conscious will . Cambridge, MA: MIT Press First citation in articleCrossrefGoogle Scholar

  • Wise, S.P. , Di Pellegrino, G. , Boussaoud, G. (1996). The premotor cortex and nonstandard sensorimotor mapping. Canadian Journal of Physiology and Pharmacology, 74, 469– 482 First citation in articleGoogle Scholar