Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Induction of the p16INK4a senescence gene as a new therapeutic strategy for the treatment of rheumatoid arthritis

Abstract

Synovial tissue affected by rheumatoid arthritis is characterized by proliferation, which leads to irreversible cartilage and bone destruction. Current and experimental treatments have been aimed mainly at correcting the underlying immune abnormalities, but these treatments often prove ineffective in preventing the invasive destruction. We studied the expression of cyclin-dependent kinase inhibitors in rheumatoid synovial cells as a means of suppressing synovial cell proliferation. Synovial cells derived from hypertrophic synovial tissue readily expressed p16INK4a when they were growth-inhibited. This was not seen in other fibroblasts, including those derived from normal and osteoarthritis-affected synovial tissues. In vivo adenoviral gene therapy with the p16INK4a gene efficiently inhibited the pathology in an animal model of rheumatoid arthritis. Thus, the induction of p16INK4a may provide a new approach to the effective treatment of rheumatoid arthritis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CDKI expression in fresh synovial tissues and in rheumatoid synovial fibroblasts and other human fibroblasts in conditions of growth inhibition.
Figure 2: Proliferation of growth-inhibited or re-stimulated fibroblasts.
Figure 3: CDKI expression during re-stimulation of cell growth.
Figure 4: Growth inhibition of the rheumatoid synovial fibroblasts by p16INK4a gene transfer.
Figure 5: Expression of the transferred gene and macroscopic effects on AA.
Figure 6: Effects of p16INK4a gene therapy on histopathology of AA.
Figure 7: Histopathological scores of treated joints.

Similar content being viewed by others

References

  1. Fox, D.A. The role of T cells in the immunopathogenesis of rheumatoid arthritis: new perspectives. Arthritis Rheum. 40, 598– 609 (1997).

    Article  CAS  Google Scholar 

  2. Gregersen, P.K., Silver, J. & Winchester, R.J. The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum. 30, 1205–1213 (1987).

    Article  CAS  Google Scholar 

  3. Feldmann, M., Elliott, M.J., Woody, J.N. & Maini, R.N. Anti-tumor necrosis factor-alpha therapy of rheumatoid arthritis. Adv. Immunol. 64, 283–350 (1997).

    Article  CAS  Google Scholar 

  4. Maini, R.N. et al. Monoclonal anti-TNF-α antibody as a probe of pathogenesis and therapy of rheumatoid disease. Immunol. Rev. 144, 195–223 (1995).

    Article  CAS  Google Scholar 

  5. Moreland, L.W. et al. Treatment of rheumatoid arthritis with a recombinant human tumor necrosis factor receptor (p75)-Fc fusion protein. N. Engl. J. Med. 337, 141–147 (1997).

    Article  CAS  Google Scholar 

  6. Ghivizzani, S.C. et al. Direct adenovirus-mediated gene transfer of interleukin 1 and tumor necrosis factor α soluble receptors to rabbit knees with experimental arthritis has local and distal anti-arthritic effects. Proc. Natl. Acad. Sci. USA 95, 4613– 4618 (1998).

    Article  CAS  Google Scholar 

  7. Otani, K. et al. Suppression of antigen-induced arthritis in rabbits by ex vivo gene therapy. J. Immunol. 156, 3558– 3562 (1996).

    CAS  PubMed  Google Scholar 

  8. Bakker, A.C. et al. Prevention of murine collagen-induced arthritis in the knee and ipsilateral paw by local expression of human interleukin-1 receptor antagonist protein in the knee. Arthritis Rheum. 40, 893–900 (1997).

    Article  CAS  Google Scholar 

  9. Zhang, H. et al. Amelioration of collagen-induced arthritis by CD95 (Apo-1/Fas)-ligand gene transfer. J. Clin. Invest. 100, 1951–1957 (1997).

    Article  CAS  Google Scholar 

  10. Apparailly, F. et al. Adenovirus-mediated transfer of viral IL-10 gene inhibits murine collagen-induced arthritis. J. Immunol. 160, 5213–5220 (1998).

    CAS  PubMed  Google Scholar 

  11. Le, C.H., Nicolson, A.G., Morales, A. & Sewell, K.L. Suppression of collagen-induced arthritis through adenovirus-mediated transfer of a modified tumor necrosis factor α receptor gene. Arthritis Rheum. 40, 1662–1669 (1997).

    Article  CAS  Google Scholar 

  12. Song, X.Y., Gu, M., Jin, W.W., Klinman, D.M. & Wahl, S.M. Plasmid DNA encoding transforming growth factor-β1 suppresses chronic disease in a streptococcal cell wall-induced arthritis model. J. Clin. Invest. 101, 2615– 2621 (1998).

    Article  CAS  Google Scholar 

  13. Firestein, G.S., Yeo, M. & Zvaifler, N.J. Apoptosis in rheumatoid arthritis synovium. J. Clin. Invest. 96, 1631–1638 (1995).

    Article  CAS  Google Scholar 

  14. Sherr, C.J. & Roberts, J.M. Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev. 9, 1149– 1163 (1995).

    Article  CAS  Google Scholar 

  15. Hirai, H., Roussel, M.F., Kato, J.Y., Ashmun, R.A. & Sherr, C.J. Novel INK4 proteins, p19 and p18, are specific inhibitors of the cyclin D-dependent kinases CDK4 and CDK6. Mol. Cell. Biol. 15, 2672–2681 (1995).

    Article  CAS  Google Scholar 

  16. Hall, M., Bates, S. & Peters, G. Evidence for different modes of action of cyclin-dependent kinase inhibitors: p15 and p16 bind to kinases, p21 and p27 bind to cyclins. Oncogene 11, 1581–1588 (1995).

    CAS  PubMed  Google Scholar 

  17. Guan, K.L. et al. Growth suppression by p18, a p16INK4/MTS1- and p14INK4B/MTS2-related CDK6 inhibitor, correlates with wild-type pRb function. Genes Dev. 8, 2939–2952 (1994).

    Article  CAS  Google Scholar 

  18. Lois, A.F., Cooper, L.T., Geng, Y., Nobori, T. & Carson, D.A. Expression of the p16 and p15 cyclin-dependent kinase inhibitors in lymphocyte activation and neuronal differentiation. Cancer Res. 55, 4010–4013 (1995).

    CAS  PubMed  Google Scholar 

  19. Alcorta, D.A. et al. Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proc. Natl. Acad. Sci. USA 93, 13742–13747 (1996).

    Article  CAS  Google Scholar 

  20. Hannon, G.J. & Beach, D. p15INK4B is a potential effector of TGF-β-induced cell cycle arrest. Nature 371, 257–261 (1994).

    Article  CAS  Google Scholar 

  21. Zindy, F., Quelle, D.E., Roussel, M.F. & Sherr, C.J. Expression of the p16INK4a tumor suppressor versus other INK4 family members during mouse development and aging. Oncogene 15, 203–211 (1997).

    Article  CAS  Google Scholar 

  22. Polyak, K. et al. Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 78, 59–66 (1994).

    Article  CAS  Google Scholar 

  23. Xiong, Y. et al. p21 is a universal inhibitor of cyclin kinases. Nature 366, 701–704 (1993).

    Article  CAS  Google Scholar 

  24. Reynisdottir, I., Polyak, K., Iavarone, A. & Massague, J. Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-β. Genes Dev. 9, 1831–1845 (1995).

    Article  CAS  Google Scholar 

  25. Zhang, P. et al. Altered cell differentiation and proliferation in mice lacking p57KIP2 indicates a role in Beckwith-Wiedemann syndrome. Nature 387, 151–158 (1997).

    Article  CAS  Google Scholar 

  26. Terada, Y. et al. Overexpression of cell cycle inhibitors (p16INK4 and p21Cip1) and cyclin D1 using adenovirus vectors regulates proliferation of rat mesangial cells. J. Am. Soc. Nephrol. 8, 51– 60 (1997).

    CAS  PubMed  Google Scholar 

  27. Sandig, V. et al. Adenovirally transferred p16INK4/CDKN2 and p53 genes cooperate to induce apoptotic tumor cell death. Nature Med. 3, 313–319 (1997).

    Article  CAS  Google Scholar 

  28. Roessler, B.J., Allen, E.D., Wilson, J.M., Hartman, J.W. & Davidson, B.L. Adenoviral-mediated gene transfer to rabbit synovium in vivo. J. Clin. Invest. 92, 1085–1092 (1993).

    Article  CAS  Google Scholar 

  29. Kato, D. et al. Features of replicative senescence induced by direct addition of antennapedia-p16INK4A fusion protein to human diploid fibroblasts. FEBS Lett. 427, 203–208 (1998).

    Article  CAS  Google Scholar 

  30. Uhrbom, L., Nistér, M. & Westermark, B. Induction of senescence in human malignant glioma cells by p16INK4A. Oncogene 15, 505– 514 (1997).

    Article  CAS  Google Scholar 

  31. Fueyo, J. et al. Adenovirus-mediated p16/CDKN2 gene transfer induces growth arrest and modifies the transformed phenotype of glioma cells. Oncogene 12, 103–110 (1996).

    CAS  PubMed  Google Scholar 

  32. Kamb, A. et al. A cell cycle regulator potentially involved in genesis of many tumor types . Science 264, 436– 440 (1994).

    Article  CAS  Google Scholar 

  33. Cairns, P. et al. Rates of p16 (MTS1) mutations in primary tumors with 9p loss. Science 265, 415–417 (1994).

    Article  CAS  Google Scholar 

  34. Nobori, T. et al. Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature 368, 753–756 (1994).

    Article  CAS  Google Scholar 

  35. Hara, E. et al. Regulation of p16CDKN2 expression and its implications for cell immortalization and senescence. Mol. Cell. Biol. 16, 859–867 (1996).

    Article  CAS  Google Scholar 

  36. Wang, X.Q. et al. Accumulation of p16CDKN2A in response to ultraviolet irradiation correlates with late S-G(2)-phase cell cycle delay. Cancer Res. 56, 2510–2514 (1996).

    CAS  PubMed  Google Scholar 

  37. Robles, S.J. & Adami, G.R. Agents that cause DNA double strand breaks lead to p16INK4a enrichment and the premature senescence of normal fibroblasts. Oncogene 16, 1113– 1123 (1998).

    Article  CAS  Google Scholar 

  38. Watanabe, Y., Lee, S.W., Detmar, M., Ajioka, I. & Dvorak, H.F. Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) delays and induces escape from senescence in human dermal microvascular endothelial cells. Oncogene 14, 2025–2032 (1997).

    Article  CAS  Google Scholar 

  39. Mathias, P., Wickham, T., Moore, M. & Nemerow, G. Multiple adenovirus serotypes use α v integrins for infection. J. Virol. 68, 6811–6814 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wickham, T.J., Filardo, E.J., Cheresh, D.A. & Nemerow, G.R. Integrin α v β 5 selectively promotes adenovirus mediated cell membrane permeabilization. J. Cell Biol. 127, 257–264 (1994).

    Article  CAS  Google Scholar 

  41. Wickham, T.J., Mathias, P., Cheresh, D.A. & Nemerow, G.R. Integrins α v β 3 and alpha v β 5 promote adenovirus internalization but not virus attachment. Cell 73, 309– 319 (1993).

    Article  CAS  Google Scholar 

  42. Huang, S., Endo, R.I. & Nemerow, G.R. Upregulation of integrins α v β 3 and α v β 5 on human monocytes and T lymphocytes facilitates adenovirus-mediated gene delivery. J. Virol. 69, 2257– 2263 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Zvaifler, N.J. Fractionated total lymphoid irradiation: a promising new treatment for rheumatoid arthritis? Yes, no, maybe. Arthritis Rheum. 30, 109–114 (1987).

    Article  CAS  Google Scholar 

  44. Arnett, F.C. et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 31, 315–324 (1988).

    Article  CAS  Google Scholar 

  45. Kanegae, Y. et al. Efficient gene activation in mammalian cells by using recombinant adenovirus expressing site-specific Cre recombinase. Nucleic Acids Res. 23, 3816–3821 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Nakamura, K. Uchida and J. Hasegawa for providing synovial samples, Y. Miyazaki for providing the human skin fibroblasts, K.-I. Ohashi for pathological examination of the samples, and S. Endo for his assistance in the animal facility. We are grateful to T. Page for critical review of the manuscript. This study was supported by a grant-in-aid for scientific research (08557037) from the Ministry of Education, Science, Sports, and Culture, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Kohsaka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taniguchi, K., Kohsaka, H., Inoue, N. et al. Induction of the p16INK4a senescence gene as a new therapeutic strategy for the treatment of rheumatoid arthritis. Nat Med 5, 760–767 (1999). https://doi.org/10.1038/10480

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/10480

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing