Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The GYF domain is a novel structural fold that is involved in lymphoid signaling through proline-rich sequences

Abstract

T cell activation through the CD2 cell surface receptor is transmitted by proline-rich sequences within its cytoplasmic tail. A membrane-proximal proline-rich tandem repeat, involved in cytokine production, is recognized by the intracellular CD2 binding protein CD2BP2. We solved the solution structure of the CD2 binding domain of CD2BP2, which we name the glycine-tyrosine-phenylalanine (GYF) domain. The GYF sequence is part of a structurally unique bulge-helix-bulge motif that constitutes the major binding site for the CD2 tail. A hydrophobic surface patch is created by motif residues that are highly conserved among a variety of proteins from diverse eukaryotic species. Thus, the architecture of the GYF domain may be widely used in protein–protein associations.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of a protein domain involved in binding of a proline-rich ligand.
Figure 2: NMR structure of the CD2BP2 GYF domain.
Figure 3: The GYF domain ligand-binding site is a contiguous surface containing many conserved hydrophobic residues.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Bierer, B.E., Sleckman, B.P., Ratnofsky, S.E. & Burakoff, S.J. Annu. Rev. Immunol. 7, 579–599 (1989).

    Article  CAS  Google Scholar 

  2. Moingeon, P. et al. Immunol. Rev. 111, 111–144 (1989).

    Article  CAS  Google Scholar 

  3. Springer, T.A. Nature 346, 425–433 (1990).

    Article  CAS  Google Scholar 

  4. Gollob, J.A., Li, J. & Reinherz, E.L. & Ritz, J. J. Exp. Med. 182, 721–731 (1995).

    Article  CAS  Google Scholar 

  5. Boussiotis V.A. et al. J. Exp. Med. 180, 1665–1673 (1994).

    Article  CAS  Google Scholar 

  6. He, Q., Beyers, A.D., Barclay, A.N. & Williams, A.F. Cell 54, 979–984 (1988).

    Article  CAS  Google Scholar 

  7. Chang, H.C. et al., J. Exp. Med. 169, 2073–2083 (1989).

    Article  CAS  Google Scholar 

  8. Moingeon, P. et al. Nature 339, 312–314 (1989).

    Article  CAS  Google Scholar 

  9. Chang, H.C. et al. J. Exp. Med. 172, 351–355 (1990).

    Article  CAS  Google Scholar 

  10. Hahn, W.C. & Bierer, B. J. Exp. Med. 178, 1831–1836 (1993).

    Article  CAS  Google Scholar 

  11. Reth, M. Nature 338, 383–384 (1989).

    Article  CAS  Google Scholar 

  12. Beaufils, P., Choquet, D., Mamoun, R.Z. & Malissen, B. EMBO J. 12, 5105–5112 (1993).

    Article  CAS  Google Scholar 

  13. Wange, R.L., Malek, S.N., Desiderio, S. & Samelson, L.E. J. Biol. Chem. 268, 19797–19801(1993).

    CAS  PubMed  Google Scholar 

  14. Iwashima, M., Irving, B.A., van Oers, N.S.C., Chan, A.C. & Weiss, A. Science 263, 1136–1139 (1994).

    Article  CAS  Google Scholar 

  15. Koyasu, S. et al. Proc. Natl. Acad. Sci. USA 91, 6693–6697 (1994).

    Article  CAS  Google Scholar 

  16. Dustin, M.L. et al. Cell 94, 667–677 (1998).

    Article  CAS  Google Scholar 

  17. Li, J. et al. EMBO J. 17, 7320–7336 (1998).

    Article  CAS  Google Scholar 

  18. Nishizawa, K., Freund, C., Li, J., Wagner, G. & Reinherz, E.L. Proc. Natl. Acad. Sci. USA 95, 14897–14902 (1998).

    Article  CAS  Google Scholar 

  19. Altschul, S.F. et al. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  Google Scholar 

  20. Brünger, A.T. X-PLOR (Version 3.1) manual. (Yale, University Press, New Haven, Connecticut; 1992).

    Google Scholar 

  21. Laskowski, R.A., Rullmann, J.A., MacArthur, M.W., Kaptein, R. & Thornton, J.M. J. Biomol. NMR 8, 477–486 (1996).

    Article  CAS  Google Scholar 

  22. Holm, L. & Sander, C. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  Google Scholar 

  23. Berger, J.M., Gamblin, S.J., Harrison, S.C. & Wang, J.C. Nature 379, 225–232 (1996).

    Article  CAS  Google Scholar 

  24. Nicholls, A., Sharp, K.A., Honig, B. Prot. Struct. Funct. Genet. 11, 282–293 (1991).

    Article  Google Scholar 

  25. Musacchio, A., Noble, M., Pauptit, R., Wierenga, R. & Saraste, M. Nature 359, 851–855 (1992).

    Article  CAS  Google Scholar 

  26. Yu, H. et al. Science 258, 1665–1668 (1992).

    Article  CAS  Google Scholar 

  27. Macias, M.J. et al. Nature 382, 646–649 (1996).

    Article  CAS  Google Scholar 

  28. Musacchio, A., Wilmanns, M. & Saraste, M. Prog. Biophys. Mol. Biol. 61, 283–297 (1994).

    Article  CAS  Google Scholar 

  29. Nguyen, J.T., Turck, C.W., Cohen, F.E., Zuckermann, R.N. & Lim, W.A. Science 282, 2088–2091 (1998).

    Article  CAS  Google Scholar 

  30. Kay, L.E., Ikura, M., Tschudin, R. & Bax, A. J. Magn. Reson. 89, 496–514 (1990).

    CAS  Google Scholar 

  31. Bax, A., Clore, G.M. & Gronenborn, A.M. J. Magn. Reson. 88, 425–431 (1990).

    CAS  Google Scholar 

  32. Grzesiek, S. & Bax, A. J. Biomol. NMR 3, 185–204 (1993).

    CAS  PubMed  Google Scholar 

  33. Vuister, G.W. & Bax, A. J. Am. Chem. Soc. 115, 7772–7777 (1993).

    Article  CAS  Google Scholar 

  34. Senn, H. et al. FEBS Lett. 249, 113–118 (1989).

    Article  CAS  Google Scholar 

  35. Güntert, P., Mumenthaler, C. & Wüthrich, K. J. Mol. Biol. 273, 283–298 (1997).

    Article  Google Scholar 

  36. Koradi, R., Billeter, M. & Wüthrich, K. J. Mol. Graphics 14, 51–55 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the National Institutes of Health (to G.W., E.L.R.). Acquisition and maintenance of spectrometers and computers used for this work were supported by the National Science Foundation, the Harvard Center for Structural Biology, and the Giovanni Armenise-Harvard Foundation for Advanced Scientific Research. The Schweizerische Nationalfonds supported C.F.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christian Freund or Gerhard Wagner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freund, C., Dötsch, V., Nishizawa, K. et al. The GYF domain is a novel structural fold that is involved in lymphoid signaling through proline-rich sequences. Nat Struct Mol Biol 6, 656–660 (1999). https://doi.org/10.1038/10712

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/10712

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing