Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Competition between glutathione and protein thiols for disulphide-bond formation

Abstract

It has long been assumed that the oxidized form of glutathione, the tripeptide glutamate–cysteine–glycine, is a source of oxidizing equivalents needed for the formation of disulphide bonds in proteins within the endoplasmic reticulum (ER), although the in vivo function of glutathione in the ER has never been studied directly. Here we show that the major pathway for oxidation in the yeast ER, defined by the protein Ero1, is responsible for the oxidation of both glutathione and protein thiols. However, mutation and overexpression studies show that glutathione competes with protein thiols for the oxidizing machinery. Thus, contrary to expectation, cellular glutathione contributes net reducing equivalents to the ER; these reducing equivalents can buffer the ER against transient hyperoxidizing conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The production of oxidized glutathione (GSSG) is coupled to Ero1 activity.
Figure 2: Growth of ero1-1 cells at high temperature is restored by gsh1::LEU2.
Figure 3: CPY oxidation is restored in the mutant by decreased intracellular glutathione amounts.
Figure 4: Induction of the unfolded-protein response (UPR) is correlated to intracellular glutathione levels.
Figure 5: Diamide blocks CPY transport by generating hyperoxidizing conditions in the ER.
Figure 6: CPY transport in cells is more sensitive to hyperoxidizing conditions than in wild-type cells.
Figure 7: Overview of glutathione and protein disulphide-bond formation in the ER.

Similar content being viewed by others

References

  1. Meister, A. Glutathione metabolism and its selective modification. J. Biol. Chem. 263, 17205–17208 ( 1988).

    CAS  PubMed  Google Scholar 

  2. Hwang, C., Sinskey, A. J. & Lodish, H. F. Oxidized redox state of glutathione in the endoplasmic reticulum. Science 257, 1496– 1502 (1992).

    Article  CAS  Google Scholar 

  3. Hoober, K. L., Joneja, B., White, H. B. III & Thorpe, C. A sulfhydryl oxidase from chicken egg white. J. Biol. Chem. 271, 30510–30516 (1996).

    Article  CAS  Google Scholar 

  4. Creighton, T. E. et al. On the biosynthesis of bovine pancreatic trypsin inhibitor (BPTI). Structure, processing, folding and disulphide bond formation of the precursor in vitro and in microsomes. J. Mol. Biol. 232, 1176–1196 (1993).

    Article  CAS  Google Scholar 

  5. Ohtake, Y. & Yabuuchi, S. Molecular cloning of the gamma-glutamylcysteine synthetase gene of Saccharomyces cerevisiae. Yeast 7, 953–961 (1991).

    Article  CAS  Google Scholar 

  6. Frand, A. R. & Kaiser, C. A. The ERO1 gene of yeast is required for oxidation of protein dithiols in the endoplasmic reticulum. Mol. Cell 1, 161–170 ( 1998).

    Article  CAS  Google Scholar 

  7. Pollard, M. G., Travers, K. J. & Weissman, J. S. Ero1p: a novel and ubiquitous protein with an essential role in oxidative protein folding in the endoplasmic reticulum. Mol. Cell 1, 171–182 ( 1998).

    Article  CAS  Google Scholar 

  8. Endrizzi, J. A., Breddam, K. & Remington, S. J. 2.8-Å structure of yeast serine carboxypeptidase . Biochemistry 33, 11106– 11120 (1994).

    Article  CAS  Google Scholar 

  9. Jämsä, E., Simonen, M. & Makarow, M. Selective retention of secretory proteins in the yeast endoplasmic reticulum by treatment of cells with a reducing agent. Yeast 10, 355–370 ( 1994).

    Article  Google Scholar 

  10. Simons, J. F., Ferro-Novick, S., Rose, M. D. & Helenius, A. BiP/Kar2p serves as a molecular chaperone during carboxypeptidase Y folding in yeast. J. Cell. Biol. 130, 41– 49 (1995).

    Article  CAS  Google Scholar 

  11. Cherest, H., Thomas, D. & Surdin-Kerjan, Y. Cysteine biosynthesis in Saccharomyces cerevisiae occurs through the transsulfuration pathway which has been built up by enzyme recruitment. J. Bacteriol. 175, 5366 –5374 (1993).

    Article  CAS  Google Scholar 

  12. Ono, B. et al. Cysteine biosynthesis in Saccharomyces cerevisiae: mutation that confers cystathionine beta-synthase deficiency. J. Bacteriol. 170, 5883–5889 ( 1988).

    Article  CAS  Google Scholar 

  13. Oluwatosin, Y. E. & Kane, P. M. Mutations in the CYS4 gene provide evidence for regulation of the yeast vacuolar H+-ATPase by oxidation and reduction in vivo. J. Biol. Chem. 272, 28149–28157 ( 1997).

    Article  CAS  Google Scholar 

  14. Paszewski, A. & Ono, B. I. Biosynthesis of sulphur amino acids in Saccharomyces cerevisiae: regulatory roles of methionine and S-adenosylmethionine reassessed. Curr. Genet. 22, 273– 275 (1992).

    Article  CAS  Google Scholar 

  15. Richman, P. G. & Meister, A. Regulation of gamma-glutamyl-cysteine synthetase by nonallosteric feedback inhibition by glutathione. J. Biol. Chem. 250, 1422– 1426 (1975).

    CAS  PubMed  Google Scholar 

  16. Cox, J. S., Shamu, C. E. & Walter, P. Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell 73, 1197–1206 ( 1993).

    Article  CAS  Google Scholar 

  17. Kohno, K., Normington, K., Sambrook, J., Gething, M. J. & Mori, K. The promoter region of the yeast KAR2 (BiP) gene contains a regulatory domain that responds to the presence of unfolded proteins in the endoplasmic reticulum. Mol. Cell. Biol. 13, 877–890 (1993).

    Article  CAS  Google Scholar 

  18. Sidrauski, C., Cox, J. S. & Walter, P. tRNA ligase is required for regulated mRNA splicing in the unfolded protein response. Cell 87, 405–413 (1996).

    Article  CAS  Google Scholar 

  19. Schmidt, M., Grey, M. & Brendel, M. A microbiological assay for the quantitative determination of glutathione. Biotechniques 21, 884– 886 (1996).

    Article  Google Scholar 

  20. Kosower, N. S. & Kosower, E. M. Diamide: an oxidant probe for thiols. Methods Enzymol. 251, 123–133 (1995).

    Article  CAS  Google Scholar 

  21. Kobayashi, T. et al. Respiratory chain is required to maintain oxidized states of the DsbA- DsbB disulfide bond formation system in aerobically growing Escherichia coli cells. Proc. Natl Acad. Sci. USA 94, 11857–11862 (1997).

    Article  CAS  Google Scholar 

  22. Kurjan, J. & Herskowitz, I. Structure of a yeast pheromone gene (MF alpha): a putative alpha-factor precursor contains four tandem copies of mature alpha-factor. Cell 30, 933– 943 (1982).

    Article  CAS  Google Scholar 

  23. Chandler, M. L. & Varandani, P. T. Kinetic analysis of the mechanism of insulin degradation by glutathione-insulin transhydrogenase (thiol: protein-disulfide oxidoreductase). Biochemistry 14, 2107–2115 (1975).

    Article  CAS  Google Scholar 

  24. Gilbert, H. F. Catalysis of thiol/disulfide exchange: single-turnover reduction of protein disulfide-isomerase by glutathione and catalysis of peptide disulfide reduction . Biochemistry 28, 7298– 7305 (1989).

    Article  CAS  Google Scholar 

  25. Adams, A., Gottschling, D. E., Kaiser, C. A. & Stearns, T. Methods in Yeast Genetics: A Cold Spring Harbor Laboratory Course Manual (Cold Spring Harb. Lab. Press, Cold Spring Harbor, 1998).

    Google Scholar 

  26. Burns, N. et al. Large-scale analysis of gene expression, protein localization, and gene disruption in Saccharomyces cerevisiae. Genes Dev. 8, 1087–1105 ( 1994).

    Article  CAS  Google Scholar 

  27. Liu, H., Krizek, J. & Bretscher, A. Construction of a GAL1-regulated yeast cDNA expression library and its application to the identification of genes whose overexpression causes lethality in yeast. Genetics 132, 665–673 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Jones, J. S. & Prakash, L. Yeast Saccharomyces cerevisiae selectable markers in pUC18 polylinkers. Yeast 6, 363–366 (1990).

    Article  CAS  Google Scholar 

  29. Anderson, M. E. Determination of glutathione and glutathione disulfide in biological samples . Methods Enzymol. 113, 548– 555 (1985).

    Article  CAS  Google Scholar 

  30. Guarente, L. Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast. Methods Enzymol. 101, 181– 191 (1983).

    Article  CAS  Google Scholar 

  31. Sikorski, R. S. & Hieter, P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19–27 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank H. Ploegh for anti-CPY antibody; R. Sauer and A. Frand for helpful discussions and critical reviews of this manuscript; and all members of the Kaiser laboratory for help and suggestions throughout the course of this project. This work was supported by a grant from the National Institutes of General Medical Sciences (GM46941). J. W. C. was supported by an NIH National Research Service Award (GM18715).

Correspondence and requests for materials should be addressed to C.A.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris A. Kaiser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuozzo, J., Kaiser, C. Competition between glutathione and protein thiols for disulphide-bond formation. Nat Cell Biol 1, 130–135 (1999). https://doi.org/10.1038/11047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/11047

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing