Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Engineering a mouse balancer chromosome

Abstract

Balancer chromosomes are genetic reagents that are used in Drosophila melanogaster for stock maintenance and mutagenesis screens1. Despite their utility, balancer chromosomes are rarely used in mice because they are difficult to generate using conventional methods. Here we describe the engineering of a mouse balancer chromosome with the Cre-loxP recombination system. The chromosome features a 24-centiMorgan (cM) inversion between Trp53 (also known as p53) and Wnt3 on mouse chromosome 11 that is recessive lethal and dominantly marked with a K14-Agouti transgene2. When allelic to a wild-type chromosome, the inversion suppresses crossing over in the inversion interval, accompanied by elevated recombination in the flanking regions. The inversion functions as a balancer chromosome because it can be used to maintain a lethal mutation in the inversion interval as a self-sustaining trans-heterozygous stock. This strategy can be used to generate similar genetic reagents throughout the mouse genome. Engineering of visibly marked inversions and deficiencies is an important step toward functional analyses of the mouse genome and will facilitate large-scale mutagenesis programs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: How a single crossover between a wild-type chromosome and a paracentric inversion (an inversion that does not span the centromere) leads to inviable dicentric and acentric products.
Figure 2: A three-step Cre-loxP–based strategy to engineer the Trp53-Wnt3 inversion.
Figure 3: Southern-blot analysis of the Trp53Brdm2 targeted allele, the Wnt3Brdm2 targeted allele and the Trp53-Wnt3 inversion.
Figure 4: Characterization of the Trp53-Wnt3 inversion.
Figure 5

Similar content being viewed by others

References

  1. Ashburner, M. Drosophila: A Laboratory Handbook (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1989).

    Google Scholar 

  2. Kucera, G.T., Bortner, D.M. & Rosenberg, M.P. Overexpression of an Agouti cDNA in the skin of transgenic mice recapitulates dominant coat color phenotypes of spontaneous mutants. Dev. Biol. 173, 162–173 (1996).

    Article  CAS  Google Scholar 

  3. Muller, H.J. Genetic variability, twin hybrids and constant hybrids, in a case of balanced lethal factors. Genetics 3, 422–499 (1918).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Strickberger, M.W. Genetics 435–438 (Macmillan, New York, 1985).

    Google Scholar 

  5. Brown, S.D. & Nolan, P.M. Mouse mutagenesis-systematic studies of mammalian gene function. Hum. Mol. Genet. 7, 1627–1633 (1998).

    Article  CAS  Google Scholar 

  6. Hrabe de Angelis, M. & Balling, R. Large scale ENU screens in the mouse: genetics meets genomics. Mutat. Res. 400, 25–32 (1998).

    Article  CAS  Google Scholar 

  7. Takahashi, J.S., Pinto, L.H. & Vitaterna, M.H. Forward and reverse genetic approaches to behavior in the mouse. Science 264, 1724–1733 (1994).

    Article  CAS  Google Scholar 

  8. Dietrich, W.F. et al. A comprehensive genetic map of the mouse genome. Nature 380, 149–152 (1996).

    Article  CAS  Google Scholar 

  9. Talbot, C.J. et al. High-resolution mapping of quantitative trait loci in outbred mice. Nature Genet. 21, 305–308 (1999).

    Article  CAS  Google Scholar 

  10. Holdener-Kenny, B., Sharan, S.K. & Magnuson, T. Mouse albino-deletions: from genetics to genes in development. Bioessays 14, 831–839 (1992).

    Article  CAS  Google Scholar 

  11. Rinchik, E.M. & Russell, L.B. Germ-line deletion mutations in the mouse: tools for intensive functional and physical mapping of regions of the mammalian genome. in Genome Analysis Volume 1: Genetic and Physical Mapping (eds Davies, K.E. & Tilghman, S.M.) 121–158 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1990).

    Google Scholar 

  12. Schumacher, A., Faust, C. & Magnuson, T. Positional cloning of a global regulator of anterior-posterior patterning in mice. Nature 383, 250–253 (1996).

    Article  CAS  Google Scholar 

  13. Schuler, G.D. et al. A gene map of the human genome. Science 274, 540–546 (1996).

    Article  CAS  Google Scholar 

  14. Liu. P. et al. Requirement for Wnt3 in vertebrate axis formation. Nature Genet. 22, 361–365 (1999).

    Article  CAS  Google Scholar 

  15. Ramirez-Solis, R., Liu, P. & Bradley, A. Chromosome engineering in mice. Nature 378, 720–724 (1995).

    Article  CAS  Google Scholar 

  16. Zheng, B., Mills, A.A. & Bradley, A. A system for rapid generation of coat color-tagged knockouts and defined chromosomal rearrangements in mice. Nucleic Acids Res. 27, 2354–2360 (1999).

    Article  CAS  Google Scholar 

  17. Yokoyama, T. et al. Conserved cysteine to serine mutation in tyrosinase is responsible for the classical albino mutation in laboratory mice. Nucleic Acids Res. 18, 7293–7298 (1990).

    Article  CAS  Google Scholar 

  18. Liu, P., Zhang, H., McLellan, A., Vogel, H. & Bradley, A. Embryonic lethality and tumorigenesis caused by segmental aneuploidy on mouse chromosome 11. Genetics 150, 1155–1168 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ramirez-Solis, R., Davis, A.C. & Bradley, A. Gene targeting in embryonic stem cells. Methods Enzymol. 225, 855–878 (1993).

    Article  CAS  Google Scholar 

  20. Singleton, J.R. A mechanism intrinsic to heterozygous inversions affecting observed recombination frequencies in adjacent regions. Genetics 49, 541–560 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ramirez-Solis, R., Zheng, H., Whiting, J., Krumlauf, R. & Bradley, A. Hoxb-4 (Hox-2.6) mutant mice show homeotic transformation of a cervical vertebra and defects in the closure of the sternal rudiments. Cell 73, 279–294 (1993).

    Article  CAS  Google Scholar 

  22. Justice, M.J. Mutagenesis of the mouse germline. in Mouse Genetics and Transgenics: A Practical Approach (eds Jackson, I.J. & Abbott, C.A.) (Oxford University Press, Oxford, in press).

  23. Lee, G. & Saito, I. Role of nucleotide sequences of loxP spacer region in Cre-mediated recombination. Gene 216, 55–65 (1998).

    Article  CAS  Google Scholar 

  24. Araki, K., Araki, M. & Yamamura, K. Targeted integration of DNA using mutant lox sites in embryonic stem cells. Nucleic Acids Res. 25, 868–872 (1997).

    Article  CAS  Google Scholar 

  25. Buchholz, F., Angrand, P.O. & Stewart, A.F. Improved properties of FLP recombinase evolved by cycling mutagenesis. Nature Biotechnol. 16, 657–662 (1998).

    Article  CAS  Google Scholar 

  26. Dymecki, S.M. Flp recombinase promotes site-specific DNA recombination in embryonic stem cells and transgenic mice. Proc. Natl Acad. Sci. USA 93, 6191–6196 (1996).

    Article  CAS  Google Scholar 

  27. Zakut-Houri, R. et al. A single gene and a pseudogene for the cellular tumour antigen p53. Nature 306, 594–597 (1983).

    Article  CAS  Google Scholar 

  28. Bienz, B., Zakut-Houri, R., Givol, D. & Oren, M. Analysis of the gene coding for the murine cellular tumour antigen p53. EMBO J. 3, 2179–2183 (1984).

    Article  CAS  Google Scholar 

  29. Matzuk, M.M., Finegold, M.J., Su, J.G., Hsueh, A.J. & Bradley, A. α-inhibin is a tumour-suppressor gene with gonadal specificity in mice. Nature 360, 313–319 (1992).

    Article  CAS  Google Scholar 

  30. Robertson, E.J. Embryo-derived stem cell lines. in Teratocarcinomas and Embryonic Stem Cells: A Practical Approach (ed. Robertson, E.J.) 71–112 (IRL, Oxford, 1987).

    Google Scholar 

  31. Baldini, A. & Lindsay, E.A. Mapping human YAC clones by fluorescence in situ hybridization using Alu-PCR from single yeast colonies. in In Situ Hybridization Protocols (ed. Choo, K.H.A.) 75–84 (Humana Press, Totowa, New Jersey, 1994).

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank H. Su for information on polymorphic markers used in assessing recombination frequencies; M. Suraokar for the Hoxb4r mouse line; S. Rivera and S. Vaishnav for preparing feeder cells; J. Weber for helpful discussions; and H. Bellen and M. Justice for helpful comments on the manuscript. This work was supported partly by grants from the National Institutes of Health and the U.S. Department of Defense. A.B. is an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan Bradley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, B., Sage, M., Cai, WW. et al. Engineering a mouse balancer chromosome. Nat Genet 22, 375–378 (1999). https://doi.org/10.1038/11949

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/11949

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing