Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dendritic asymmetry cannot account for directional responses of neurons in visual cortex

Abstract

A simple model was proposed to account for the direction selectivity of neurons in the primary visual cortex, area V1. In this model, the temporal asymmetries in the summation of inhibition and excitation that produce directionality were generated by structural asymmetries in the tangential organization of the basal dendritic tree of cortical neurons. We reconstructed dendritic trees of neurons with known direction preferences and found no correlation between the small biases of a neuron's dendritic morphology and its direction preference. Detailed simulations indicated that even when the electrotonic asymmetries in the dendrites were extreme, as in cortical Meynert cells, the biophysical properties of single neurons could contribute only partially to the directionality of cortical neurons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Computing the dendritic bias.
Figure 2: Directionality and dendritic asymmetry.
Figure 3: Analysis of the relationship between directionality and dendritic bias.
Figure 4: .

Similar content being viewed by others

References

  1. Hassenstein, B. & Reichardt, W. E. in Proc. 1st Int. Congress Cybernetics Namar 797–801 (1956).

    Google Scholar 

  2. Barlow, H. B. & Levick, W. R. The mechanism of directionally selective units in rabbit's retina. J. Physiol.(Lond.) 178, 477–504 (1965).

    Article  CAS  Google Scholar 

  3. Livingstone, M. S. Mechanisms of direction selectivity in macaque V1. Neuron 20, 509–526 (1998).

    Article  CAS  Google Scholar 

  4. Rall, W. in Neural Theory and Modeling (ed. Reiss, R.) 73–97 (Stanford Univ. Press, Stanford, California, 1964).

    Google Scholar 

  5. Agmon-Snir, H. & Segev, I. Signal delay and propagation velocity in passive dendritic trees. J. Neurophysiol. 70, 2066–2085 (1993).

    Article  CAS  Google Scholar 

  6. Ramon y Cajal, S. Estudios sobre la corteza cerebral humana. Corteza visual. Revista Trimestral Icorgraphia 4, 1–63 (1899).

  7. Le Gros Clark, W. E. The cells of Meynert in the visual cortex of the monkey. J. Anat. 76, 369–377 (1942).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Chan-Palay, V., Palay, S. L. & Billings-Gagliardi, S. M. Meynert cells in the primate visual cortex. J. Neurocytol. 3, 631–658 (1974).

    Article  CAS  Google Scholar 

  9. Winfield, D. A., Neal, J. W. & Powell, T. P. S. The basal dendrites of Meynert cells in the striate cortex of the monkey. Proc. R. Soc. Lond. B Biol. Sci. 217, 27–40 (1983).

    Google Scholar 

  10. Winfield, D. A., Rivera-Dominguez, M. & Powell, T. P. S. The number and distribution of Meynert cells in area 17 of the macaque monkey. Proc. R. Soc. Lond. B Biol. Sci. 213, 27–40 (1981).

    Article  CAS  Google Scholar 

  11. Adams, J. C. Heavy metal intensification of DAB-based HRP reaction product. J. Histochem. Cytochem. 29, 775 (1981).

    Article  CAS  Google Scholar 

  12. Daniel, P. M. & Whitteridge, D. The representation of the visual field on the cerebral cortex in monkeys. J. Physiol. (Lond.) 159, 203–221 (1961).

    Article  CAS  Google Scholar 

  13. Segev, I. & Rall, W. Excitable dendrites and spines: Earlier theoretical insights elucidates recent direct observations. Trends Neurosci. 21, 453–459 (1998).

    Article  CAS  Google Scholar 

  14. Cole, K. S. C. Membranes, Ions and Impulses (Univ. California Press, Berkeley, 1968).

    Google Scholar 

  15. Jack, J. J. B., Noble, D. & Tsien, R. W. Electric Current Flow In Excitable Cells (Clarendon, Oxford, 1975).

    Google Scholar 

  16. Martin, K. A. C. & Whitteridge, D. The relationship of receptive field properties to the dendritic shape of neurones in the cat striate cortex. J. Physiol (Lond.) 356, 291–302 (1984).

    Article  CAS  Google Scholar 

  17. Orban G. A., Kennedy, H. & Maes, H. Response to movement of neurons in areas 17 and 18 in the cat: direction selectivity. J. Neurophysiol. 45, 1043–1073 (1981).

    Article  CAS  Google Scholar 

  18. Saul, A. B. & Humphrey, A. L. Temporal-frequency tuning of direction selectivity in cat visual cortex. Vis. Neurosci. 8, 365–372 (1992).

    Article  CAS  Google Scholar 

  19. Galarreta, M. & Hestrin, S. Properties of GABAA receptors underlying inhibitory synaptic currents in neocortical pyramidal neurons. J. Neurosci. 17, 7220–7227 (1997).

    Article  CAS  Google Scholar 

  20. Douglas, R. J. & Martin, K. A. C. A functional microcircuit for cat visual cortex. J. Physiol. (Lond.) 440, 735–769 (1991).

    Article  CAS  Google Scholar 

  21. Douglas, R. J., Koch, C., Mahowald, M., Martin, K. A. C. & Suarez, H. H. Recurrent excitation in neocortical circuits. Science 269, 981–985 (1995).

    Article  CAS  Google Scholar 

  22. Suarez, H. H., Koch, C. & Douglas, R. J. Modeling direction selectivity of simple cells in striate visual cortex within the framework of the canonical microcircuit. J. Neurosci. 15, 6700–6719 (1995).

    Article  CAS  Google Scholar 

  23. Maex, R. & Orban, G. A. Model circuit of spiking neurons generating directional selectivity in simple cells. J. Neurophysiol. 75, 1515–1545 (1996).

    Article  CAS  Google Scholar 

  24. Martin, K. A. C. & Whitteridge, D. Form, function and intracortical projections of spiny neurons in the striate visual cortex of the cat. J. Physiol. (Lond.) 353, 463–504 (1984).

    Article  CAS  Google Scholar 

  25. Douglas R. J., Martin, K. A. C. & Whitteridge, D. An intracellular analysis of the visual responses of neurones in cat visual cortex. J. Physiol. (Lond.) 440, 659–696 (1991).

    Article  CAS  Google Scholar 

  26. Hines, M. L. & Carnavale, N. T. The NEURON simulation environment. Neural Comput. 9, 1179–1209 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by an SNF SPP grant to K.A.C.M. and R.J. Douglas and grants to I.S. from the Israeli Academy of Science and the Office of Naval Research. We thank R.J.D. for contributions to the experiments and cell reconstructions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. C. Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, J., Binzegger, T., Kahana, O. et al. Dendritic asymmetry cannot account for directional responses of neurons in visual cortex. Nat Neurosci 2, 820–824 (1999). https://doi.org/10.1038/12194

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/12194

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing