Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Irs-2 coordinates Igf-1 receptor-mediated β-cell development and peripheral insulin signalling

Abstract

Insulin receptor substrates (Irs proteins) mediate the pleiotropic effects of insulin and Igf-1 (insulin-like growth factor-1), including regulation of glucose homeostasis and cell growth and survival. We intercrossed mice heterozygous for two null alleles (Irs1+/– and Irs2+/–) and investigated growth and glucose metabolism in mice with viable genotypes. Our experiments revealed that Irs-1 and Irs-2 are critical for embryonic and post-natal growth, with Irs-1 having the predominant role. By contrast, both Irs-1 and Irs-2 function in peripheral carbohydrate metabolism, but Irs-2 has the major role in β-cell development and compensation for peripheral insulin resistance. To establish a role for the Igf-1 receptor in β-cells, we intercrossed mice heterozygous for null alleles of Igf1r and Irs2. Our results reveal that Igf-1 receptors promote β-cell development and survival through the Irs-2 signalling pathway. Thus, Irs-2 integrates the effects of insulin in peripheral target tissues with Igf-1 in pancreatic β-cells to maintain glucose homeostasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Growth characteristics of progeny of Irs1+/–Irs2+/– intercross.
Figure 2: Metabolic characteristics of progeny of Irs1+/–Irs2+/– intercross.
Figure 3: Insulin signalling in skeletal muscle and liver of progeny of an Irs1+/–Irs2+/– intercross.
Figure 4: Islet morphology and β-cell analysis in progeny of Irs1+/–Irs2+/– intercross.
Figure 5: Islet morphology and β-cell mass in Igf1r–/– mice.
Figure 6: Weight and metabolic characteristics of progeny of Igf1r+/–Irs2+/– intercross.
Figure 7: Islet morphology in progeny of Igf1r+/–Irs2+/– intercross.
Figure 8: A model depicting the central role of Irs-2 signalling pathways in the maintenance of normal glucose homeostasis.

Similar content being viewed by others

References

  1. Cheatham, B. & Kahn, C.R. Insulin action and the insulin signaling network. Endocr. Rev. 16, 117– 142 (1995).

    CAS  PubMed  Google Scholar 

  2. LeRoith, D., Werner, H., Beitner-Johnson, D. & Roberts, C. Molecular and cellular aspects of the insulin-like growth factor I receptor. Endocr. Rev. 16, 143–163 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Baserga, R., Hongo, A., Rubini, M., Prisco, M. & Valentinis, B. The IGF-I receptor in cell growth, transformation, and apoptosis. Biochem. Biophys. Acta 1332, F105–F126(1997).

    CAS  PubMed  Google Scholar 

  4. Baserga, R. Oncogenes and the strategy of growth factors. Cell 79, 927–930 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. White, M.F. & Kahn, C.R. The insulin signaling system. J. Biol. Chem. 269, 1–4 (1994).

    CAS  PubMed  Google Scholar 

  6. Myers, M.G. Jr et al. IRS-1 is a common element in insulin and insulin-like growth factor-I signaling to the phosphatidylinositol3′-kinase. Endocrinology 132, 1421–1430 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Liu, J.P., Baker, J., Perkins, J.A., Robertson, E.J. & Efstratiadis, A. Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell 75, 59–72 (1993).

    CAS  PubMed  Google Scholar 

  8. Accili, D. et al. Early neonatal death in mice homozygous for a null allele of the insulin receptor gene. Nature Genet. 12, 106–109 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Kulkarni, R.N. et al. Tissue-specific knockout of the insulin receptor in pancreatic β cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell 96, 329–339 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Sun, X.J. et al. The expression and function of IRS-1 in insulin signal transmission. J. Biol. Chem. 267, 22662– 22672 (1992).

    CAS  PubMed  Google Scholar 

  11. Sun, X.J. et al. Role of IRS-2 in insulin and cytokine signaling. Nature 377, 173–177 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  12. Bernal, D. et al. Amino acid polymorphisms are not associated with random type 2 diabetes among Caucasians. Diabetes 47, 976–979 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Withers, D.J. et al. Disruption of IRS-2 causes type 2 diabetes in mice. Nature 391, 900–903 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  14. Araki, E. et al. Alternative pathway of insulin signalling in mice with targetted disruption of the IRS-1 gene. Nature 372, 186–190 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Yamauchi, T. et al. Insulin signaling and insulin actions in the muscles and livers of insulin-resistant, insulin receptor substrate 1-deficient mice. Mol. Cell. Biol. 16, 3074–3084 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tamemoto, H. et al. Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature 372, 182–186 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Herrera, P.L. et al. Embryogenesis of the murine endocrine pancreas; early expression of pancreatic polypeptide gene. Development 113, 1257–1265 (1991).

    CAS  PubMed  Google Scholar 

  18. LeRoith, D., Parrizas, M. & Blakesley, V.A. The insulin-like growth factor-I receptor and apoptosis. Implications for the aging process. Endocrine 7, 103–105 (1997).

    Article  CAS  Google Scholar 

  19. Yenush, L., Zanella, C., Uchida, T., Bernal, D. & White, M.F. The pleckstrin homology and phosphotyrosine binding domains of insulin receptor substrate 1 mediate inhibition of apoptosis by insulin. Mol. Cell. Biol. 18, 6784– 6794 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Scaglia, L., Smith, F.E. & Bonner-Weir, S. Apoptosis contributes to the involution of β cell mass in the post partum rat pancreas. Endocrinology 136, 5461–5468 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Scaglia, L., Cahill, C.J., Finegood, D.T. & Bonner-Weir, S. Apoptosis participates in the remodeling of the endocrine pancreas in the neonatal rat. Endocrinology 138, 1736– 1741 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Datta, S.R. et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91, 231–241 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Bruning, J.C., Winnay, J., Cheatham, B. & Kahn, C.R. Differential signaling by insulin receptor substrate 1 (IRS-1) and IRS-2 in IRS-1 deficient cells. Mol. Cell. Biol. 17, 1513– 1521 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rother, K.I. et al. Evidence that IRS-2 phosphorylation is required for insulin action in hepatocytes. J. Biol. Chem. 273, 17491–17497 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Velloso, L.A., Carneiro, E.M., Crepaldi, S.C., Boschero, A.C. & Saad, M.J. Glucose- and insulin-induced phosphorylation of the insulin receptor and its primary substrates IRS-1 and IRS-2 in rat pancreatic islets. Growth Regul. 377, 353 –357 (1995).

    CAS  Google Scholar 

  26. Schuppin, G.T. et al. A specific increased expression of insulin receptor substrate 2 in pancreatic β-cell lines is involved with mediating serum-stimulated β-cell growth. Diabetes 47, 1074– 1085 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Hugl, S.R., White, M.F. & Rhodes, C.J. IGF-1 stimulated pancreatic β-cell growth is glucose dependent: synergistic activation of IRS-mediated signal transduction pathways by glucose and IGF-1 in INS-1 cells. J. Biol. Chem. 273, 17771–17779 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Sawka-Verhelle, D. et al. Tyr624 and Tyr628 in insulin receptor substrate-2 mediate its association with the insulin receptor. J. Biol. Chem. 272, 16414–16420 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Sawka-Verhelle, D., Tartare-Deckert, S., White, M.F. & Van Obberghen, E. Insulin receptor substrate-2 binds to the insulin receptor through its phosphotyrosine-binding domain and through a newly identified domain comprising amino acids 591–786. J. Biol. Chem. 271, 5980– 5983 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Vaisse, C., Kim, J., Espinosa, R. III, Lebeau, M.M. & Stoffel, M. Pancreatic islet expression studies and polymorphic DNA markers in the genes encoding hepatocyte nuclear factor-3×, -3β, -3γ, -4γ, and -6. Diabetes 48 , 1364–1367 (1997).

    Article  Google Scholar 

  31. Ahlgren, U., Jonsson, J., Jonsson, L., Simu, K. & Edlund, H. β-cell-specific inactivation of the mouse Ipf1/Pdx1 gene results in loss of the β-cell phenotype and maturity onset diabetes. Genes Dev. 12, 1763–1768 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Edlund, H. Transcribing pancreas. Diabetes 47, 1817 –1823 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Sharma, S. et al. Hormonal regulation of an islet-specific enhancer in the pancreatic homeobox gene STF-1. Mol. Cell. Biol. 17, 2598–2604 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Guz, Y. et al. Expression of murine STF-1, a putative insulin gene transcription factor, in β cells of pancreas, duodenal epithelium and pancreatic exocrine and endocrine progenitors during ontogeny. Development 121, 11–18 (1995).

    CAS  PubMed  Google Scholar 

  35. Baker, J., Liu, J.P., Robertson, E.J. & Efstratiadis, A. Role of insulin-like growth factors in embryonic and postnatal growth. Cell 75, 73–82 ( 1993).

    Article  CAS  PubMed  Google Scholar 

  36. Swenne, I. Pancreatic β-cell growth and diabetes mellitus. Diabetologia 35, 193–201 ( 1992).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Efstratiadis for Igf1r+/– mice; B. Cheatham for anti-IRβ antibodies; and J. Marron for assistance in preparation of this manuscript. This work was supported by DK43808. D.J.W. is an MRC (UK) Clinician Scientist and D.J.B. was supported by a grant from the JDFI during a portion of these studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morris F. White.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Withers, D., Burks, D., Towery, H. et al. Irs-2 coordinates Igf-1 receptor-mediated β-cell development and peripheral insulin signalling. Nat Genet 23, 32–40 (1999). https://doi.org/10.1038/12631

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/12631

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing