Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genomic instability in Gadd45a-deficient mice

Abstract

Gadd45a-null mice generated by gene targeting exhibited several of the phenotypes characteristic of p53-deficient mice, including genomic instability, increased radiation carcinogenesis and a low frequency of exencephaly. Genomic instability was exemplified by aneuploidy, chromosome aberrations, gene amplification and centrosome amplification, and was accompanied by abnormalities in mitosis, cytokinesis and growth control. Unequal segregation of chromosomes due to multiple spindle poles during mitosis occurred in several Gadd45a–/– cell lineages and may contribute to the aneuploidy. Our results indicate that Gadd45a is one component of the p53 pathway that contributes to the maintenance of genomic stability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Targeting of Gadd45a.
Figure 2: Increased growth rate and ras transformation of Gadd45a–/– MEFs.
Figure 3: Gadd45a–/– MEFs exhibit aneuploidy and gene amplification.
Figure 4: Amplification of centrosomes in Gadd45a–/– cells.
Figure 5: Enhanced radiation-induced carcinogenesis and normal radiation-induced apoptosis in Gadd45a–/– mice.
Figure 6: Checkpoint activation in Gadd45a–/– cells.
Figure 7: Hyperploidy and centrosome amplification in E7/ras-transformed Gadd45a–/– MEFs.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Kastan, M.B. et al. A mammalian cell cycle checkpoint utilizing p53 and GADD45 is defective in ataxia telangiectasia. Cell 71 , 587–597 (1992).

    Article  CAS  Google Scholar 

  2. Zhan, Q., Chen, I.T., Antinore, M.J. & Fornace, A.J. Jr Tumor suppressor p53 can participate in transcriptional induction of the GADD45 promoter in the absence of direct DNA binding. Mol. Cell. Biol. 18, 2768–2778 (1998).

    Article  CAS  Google Scholar 

  3. Amundson, S.A., Myers, T.G. & Fornace, A.J. Jr Roles for p53 in growth arrest and apoptosis: putting on the brakes after genotoxic stress. Oncogene 17, 3287–3300 ( 1998).

    Article  Google Scholar 

  4. Harkin, D.P. et al. Induction of GADD45 and JNK/SAPK-dependent apoptosis following inducible expression of BRCA1. Cell 97, 575–586 (1999).

    Article  CAS  Google Scholar 

  5. Donehower, L.A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215–221 (1992).

    Article  CAS  Google Scholar 

  6. Sah, V.P. et al. A subset of p53-deficient embryos exhibit exencephaly. Nature Genet. 10, 175–180 (1995).

    Article  CAS  Google Scholar 

  7. Ko, L.J. & Prives, C. p53: puzzle and paradigm. Genes Dev. 10, 1054–1072 (1996).

    Article  CAS  Google Scholar 

  8. Deng, C., Zhang, P., Harper, J.W., Elledge, S.J. & Leder, P. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82, 675–684 (1995).

    Article  CAS  Google Scholar 

  9. Brugarolas, J. et al. Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature 377, 552–557 (1995).

    Article  CAS  Google Scholar 

  10. Smith, M.L. et al. Interaction of the p53-regulated protein Gadd45 with proliferating cell nuclear antigen. Science 266, 1376– 1380 (1994).

    Article  CAS  Google Scholar 

  11. Kearsey, J.M., Coates, P.J., Prescott, A.R., Warbrick, E. & Hall, P.A. Gadd45 is a nuclear cell cycle regulated protein which interacts with p21Cip1. Oncogene 11, 1675–1683 (1995).

    CAS  PubMed  Google Scholar 

  12. Takekawa, M. & Saito, H. A family of stress-inducible GADD45-like proteins mediate activation of the stress-responsive MTK1/MEKK4 MAPKKK. Cell 95, 521–530 ( 1998).

    Article  CAS  Google Scholar 

  13. Zhan, Q. et al. Association with Cdc2 and inhibition of Cdc2/cyclin B1 kinase activity by the p53-regulated protein Gadd45. Oncogene 18, 2892–2900 (1999).

    Article  CAS  Google Scholar 

  14. Carrier, F. et al. Gadd45, a p53-responsive stress protein, modifies DNA accessibility on damaged chromatin. Mol. Cell. Biol. 19, 1673–1685 (1999).

    Article  CAS  Google Scholar 

  15. Wang, X.W. et al. Gadd45 induction of a G2-M cell cycle checkpoint. Proc. Natl Acad. Sci. USA 96, 3706– 3711 (1999).

    Article  CAS  Google Scholar 

  16. Livingstone, L.R. et al. Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell 70, 923–935 (1992).

    Article  CAS  Google Scholar 

  17. Kamijo, T. et al. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91, 649–659 (1997).

    Article  CAS  Google Scholar 

  18. Zimmerman, W., Sparks, C.A. & Doxsey, S.J. Amorphous no longer: the centrosome comes into focus. Curr. Opin. Cell Biol. 11, 122– 128 (1999).

    Article  CAS  Google Scholar 

  19. Pockwinse, S.M. et al. Cell cycle independent interaction of CDC2 with the centrosome, which is associated with the nuclear matrix-intermediate filament scaffold. Proc. Natl Acad. Sci. USA 94, 3022– 3027 (1997).

    Article  CAS  Google Scholar 

  20. Fero, M.L., Randel, E., Gurley, K.E., Roberts, J.M. & Kemp, C.J. The murine gene p27Kip1 is haplo-insufficient for tumour suppression. Nature 396, 177– 180 (1998).

    Article  CAS  Google Scholar 

  21. Kemp, C.J., Wheldon, T. & Balmain, A. p53-deficient mice are extremely susceptible to radiation-induced tumorigenesis. Nature Genet. 8, 66– 69 (1994).

    Article  CAS  Google Scholar 

  22. Bouffler, S.D., Kemp, C.J., Balmain, A. & Cox, R. Spontaneous and ionizing radiation-induced chromosomal abnormalities in p53-deficient mice. Cancer Res. 55, 3883–3889 (1995).

    CAS  PubMed  Google Scholar 

  23. Bunz, F. et al. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282, 1497–1501 (1998).

    Article  CAS  Google Scholar 

  24. Knudson, C.M., Tung, K.S., Tourtellotte, W.G., Brown, G.A. & Korsmeyer, S.J. Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science 270, 96–99 (1995).

    Article  CAS  Google Scholar 

  25. Serrano, M., Lin, A.W., McCurrach, M.E., Beach, D. & Lowe, S.W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 ( 1997).

    Article  CAS  Google Scholar 

  26. Hendzel, M.J. et al. Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106, 348–360 ( 1997).

    Article  CAS  Google Scholar 

  27. Hennings, H. et al. Calcium regulation of growth and differentiation of mouse epidermal cells in culture. Cell 19, 245 –254 (1980).

    Article  CAS  Google Scholar 

  28. Lowe, S.W., Schmitt, E.M., Smith, S.W., Osborne, B.A. & Jacks, T. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362, 847–849 (1993).

    Article  CAS  Google Scholar 

  29. Nelson-Rees, W.A., Hunter, L., Darlington, G.J. & O'Brien, S.J. Characteristics of HeLa strains: permanent vs. variable features. Cytogenet. Cell Genet. 27, 216–231 (1980).

    Article  CAS  Google Scholar 

  30. Wang, X. Gorospe, M. & Holbrook, N.J. gadd45 is not required for activation of c-jun N-terminal kinase or p38 during acute stress. J. Biol. Chem. (in press).

Download references

Acknowledgements

We thank J.M. Ward, M. Anver, F. Gonzalez, D.R. Lowy, M.L. Smith, H. Petrie, J. Sanchez, C. Vargas and P.M. O'Connor for advice and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert J. Fornace Jr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hollander, M., Sheikh, M., Bulavin, D. et al. Genomic instability in Gadd45a-deficient mice. Nat Genet 23, 176–184 (1999). https://doi.org/10.1038/13802

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/13802

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing