Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rab5 regulates motility of early endosomes on microtubules

Abstract

The small GTPase Rab5 regulates membrane docking and fusion in the early endocytic pathway. Here we reveal a new role for Rab5 in the regulation of endosome interactions with the microtubule network. Using Rab5 fused to green fluorescent protein we show that Rab5-positive endosomes move on microtubules in vivo. In vitro, Rab5 stimulates both association of early endosomes with microtubules and early-endosome motility towards the minus ends of microtubules. Moreover, similarly to endosome membrane docking and fusion, Rab5-dependent endosome movement depends on the phosphatidylinositol-3-OH kinase hVPS34. Thus, Rab5 functionally links regulation of membrane transport, motility and intracellular distribution of early endosomes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: EGFP–Rab5 co-localizes with early endosomes in A431 cells.
Figure 2: Endosomes positive for EGFP–Rab5 move in a microtubule-dependent fashion in vivo.
Figure 3: Rab5 regulates endosome association with microtubules.
Figure 4: Early endosomes move on microtubules in a Rab5-dependent fashion in vitro.
Figure 5: Rab5 increases the proportion of minus-end-directed endosome movements on microtubules and this effect requires PI(3)K activity.

Similar content being viewed by others

References

  1. Mellman, I. Endocytosis and molecular sorting. Annu. Rev. Cell Dev. Biol. 12, 575–625 (1996).

    Article  CAS  Google Scholar 

  2. Lippincott-Schwartz, J. Cytoskeletal proteins and Golgi dynamics. Curr. Opin. Cell Biol. 10, 52–59 ( 1998).

    Article  CAS  Google Scholar 

  3. Matteoni, R. & Kreis, T. E. Translocation and clustering of endosomes and lysosomes depends on microtubules. J. Cell Biol. 105, 1253–1265 ( 1987).

    Article  CAS  Google Scholar 

  4. Gruenberg, J., Griffiths, G. & Howell, K. E. Characterization of the early endosome and putative endocytic carrier vesicles in vivo and with an assay of vesicle fusion in vitro. J. Cell Biol. 108, 1301– 1316 (1989).

    Article  CAS  Google Scholar 

  5. McGraw, T. E., Dunn, K. W. & Maxfield, F. R. Isolation of a temperature-sensitive variant Chinese hamster ovary cell line with a morphologically altered endocytic recycling compartment. J. Cell Physiol. 155, 579– 594 (1993).

    Article  CAS  Google Scholar 

  6. Aniento, F., Emans, N., Griffiths, G. & Gruenberg, J. Cytoplasmic dynein-dependent vesicular transport from early to late endosomes. J. Cell Biol. 123, 1373–1387 (1993).

    Article  CAS  Google Scholar 

  7. Bomsel, M., Parton, R., Kuznetsov, S. A., Schroer, T. & Gruenberg, J. Microtubule- and motor-dependent fusion in vitro between apical and basolateral endocytic vesicles from MDCK cells. Cell 62, 719– 731 (1990).

    Article  CAS  Google Scholar 

  8. Riezman, H. Yeast endocytosis. Trends Cell Biol. 3, 273–277 (1993).

    Article  CAS  Google Scholar 

  9. Lamaze, C., Fujimoto, L. M., Yin, H. L. & Schmid, S. L. The actin cytoskeleton is required for receptor-mediated endocytosis in mammalian cells. J. Biol. Chem. 272, 20332– 20335 (1997).

    Article  CAS  Google Scholar 

  10. Murphy, C. et al. Endosome dynamics regulated by a Rho protein. Nature 384, 427–432 ( 1996).

    Article  CAS  Google Scholar 

  11. Novick, P. & Brennwald, P. Friends and family: the role of the Rab GTPases in vesicular transport. Cell 75, 597–601 (1993).

    Article  CAS  Google Scholar 

  12. Simonsen, A. et al. EEA1 links phosphatidylinositol 3-kinase function to Rab5 regulation of endosome fusion. Nature 394, 494–498 (1998).

    Article  CAS  Google Scholar 

  13. Christoforidis, S., McBride, H. M., Burgoyne, R. D. & Zerial, M. The Rab5 effector EEA1 is a core component of endosome docking. Nature 397, 621–625 ( 1999).

    Article  CAS  Google Scholar 

  14. TerBush, D. R., Maurice, T., Roth, D. & Novick, P. The Exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae . EMBO J. 15, 6483–6494 (1996).

    Article  CAS  Google Scholar 

  15. Novick, P. & Zerial, M. The diversity of Rab proteins in vesicle transport. Curr. Opin. Cell Biol. 9, 496–504 (1997).

    Article  CAS  Google Scholar 

  16. Bucci, C. et al. The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway. Cell 70, 715– 728 (1992).

    Article  CAS  Google Scholar 

  17. Stenmark, H. et al. Inhibition of rab5 GTPase activity stimulates membrane fusion in endocytosis. EMBO J. 13, 1287– 1296 (1994).

    Article  CAS  Google Scholar 

  18. D"Arrigo, A., Bucci, C., Toh, B. H. & Stenmark, H. Microtubules are involved in bafilomycin A1-induced tubulation and Rab5-dependent vacuolation of early endosomes. Eur. J. Cell Biol. 72, 95–103 (1997).

    CAS  Google Scholar 

  19. Scheel, J. & Kreis, T. E. Motor protein independent binding of endocytic carrier vesicles to microtubules in vitro. J. Biol. Chem. 266, 18141–18148 (1991).

    CAS  PubMed  Google Scholar 

  20. Vale, R. D., Reese, T. S. & Sheetz, M. P. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42, 39–50 (1985).

    Article  CAS  Google Scholar 

  21. Ullrich, O., Horiuchi, H., Bucci, C. & Zerial, M. Membrane association of Rab5 mediated by GDP-dissociation inhibitor and accompanied by GDP/GTP exchange. Nature 368, 157– 160 (1994).

    Article  CAS  Google Scholar 

  22. Howard, J. & Hyman, A. A. Preparation of marked microtubules for the assay of the polarity of microtubule-based motors by fluorescence microscopy. Methods Cell Biol 39, 105– 113 (1993).

    Article  CAS  Google Scholar 

  23. Rybin, V. et al. GTPase activity of rab5 acts as a timer for endocytic membrane fusion. Nature 383, 266– 269 (1996).

    Article  CAS  Google Scholar 

  24. Barnard, R. J. O., Morgan, A. & Burgoyne, R. D. Stimulation of NSF ATPase activity by alpha-SNAP is required for SNARE complex disassembly and exocytosis. J. Cell Biol. 139, 875–883 ( 1997).

    Article  CAS  Google Scholar 

  25. Blocker, A. et al. Molecular requirements for bi-directional movement of phagosomes along microtubules. J. Cell Biol. 137, 113 –129 (1997).

    Article  CAS  Google Scholar 

  26. Marlowe, K. J. et al. Changes in kinesin distribution and phosphorylation occur during regulated secretion in pancreatic acinar cells. Eur. J. Cell Biol. 75, 140–152 ( 1998).

    Article  CAS  Google Scholar 

  27. Bi, G. Q. et al. Kinesin- and myosin-driven steps of vesicle recruitment for Ca2+-regulated exocytosis. J. Cell Biol. 138, 999–1008 (1997).

    Article  CAS  Google Scholar 

  28. Patki, V. V. J., Lane, W. S., Toh, B. H., Shpetner, H. S. & Corvera, S. Identification of an early endosomal protein regulated by phosphatidylinositol 3-kinase. Proc. Natl Acad. Sci. USA 94, 7326–7330 (1997).

    Article  CAS  Google Scholar 

  29. Christoforidis, S. et al. Phosphatidylinositol-3-OH kinases are Rab5 effectors. Nature Cell Biol. 1, 249–252 (1999).

    Article  CAS  Google Scholar 

  30. Siddhanta, U., McIlroy, J., Shah, A., Zhang, Y. & Backer, J. M. Distinct roles for the p110alpha and hVPS34 phosphatidylinositol 3"-kinases in vesicular trafficking, regulation of the actin cytoskeleton, and mitogenesis. J. Cell Biol. 143, 1647 –1659 (1998).

    Article  CAS  Google Scholar 

  31. Goodson, H. V., Valetti, C. & Kreis, T. E. Motors and membrane traffic. Curr. Opin. Cell Biol. 9, 18–28 ( 1997).

    Article  CAS  Google Scholar 

  32. Echard, A. et al. Interaction of a Golgi-associated kinesin-like protein with Rab6. Science 279, 580– 585 (1998).

    Article  CAS  Google Scholar 

  33. Burkhardt, J. K., Echeverri, C. J., Nilsson, T. & Vallee, R. B. Overexpression of the dynamitin (p50) subunit of the dynactin complex disrupts dynein-dependent maintenance of membrane organelle distribution. J. Cell Biol. 139, 469–484 (1997).

    Article  CAS  Google Scholar 

  34. Ferhat, L., Kuriyama, R., Lyons, G. E., Micales, B. & Baas, P. W. Expression of the mitotic motor protein CHO1/MKLP1 in postmitotic neurons. Eur. J. Neurosci. 10, 1383–1393 (1998).

    Article  CAS  Google Scholar 

  35. Saito, N. et al. KIFC2 is a novel neuron-specific C-terminal type kinesin superfamily motor for dendritic transport of multivesicular body-like organelles. Neuron 18, 425–438 ( 1997).

    Article  CAS  Google Scholar 

  36. Hoang, E., Bost-usinger, L. & Burnside, B. Characterization of a novel C-kinesin (KIFC3) abundantly expressed in vertebrate retina and RPE. Exp. Eye Res. 69, 57–68 (1999).

    Article  CAS  Google Scholar 

  37. Shpetner, H., Joly, M., Hartley, D. & Corvera, S. Potential sites of PI-3 kinase function in the endocytic pathway revealed by the PI-3 kinase inhibitor, wortmannin. J. Cell Biol. 132, 595–605 (1996).

    Article  CAS  Google Scholar 

  38. Burd, C. G. & Emr, S. D. Phosphatidylinositol(3)-phosphate signaling mediated by specific binding to RING FYVE domains. Mol. Cell 2, 157–162 ( 1998).

    Article  CAS  Google Scholar 

  39. Gaullier, J.-M. et al. FYVE fingers bind PtdIns(3)P. Nature 394, 432–433 (1998).

    Article  CAS  Google Scholar 

  40. Stenmark, H., Aasland, R., Toh, B. H. & D’Arringo, A. Endosomal localization of the autoantigen EEA1 is mediated by zinc-binding FYVE finger . J. Biol. Chem. 271, 24048– 24054 (1996).

    Article  CAS  Google Scholar 

  41. McBride, H. M . et al. Oligomeric complexes link Rab5 effectors with NSF and drive membrane fusion via interactions between EEA1 and syntaxin 13. Cell (in the press).

  42. Gorvel, J.-P., Chavrier, P., Zerial, M. & Gruenberg, J. Rab5 controls early endosome fusion in vitro. Cell 64, 915–925 (1991).

    Article  CAS  Google Scholar 

  43. Keown, W. A., Campbell, C. R. & Kucherlapati, R. S. Methods for introducing DNA into mammalian cells . Methods Enzymol. 185, 527– 537 (1990).

    Article  CAS  Google Scholar 

  44. Horiuchi, H. et al. A novel Rab5 GDP/GTP exchange factor complexed to Rabaptin-5 links nucleotide exchange to effector recruitment and function. Cell 90, 1149–1159 ( 1997).

    Article  CAS  Google Scholar 

  45. Bornens, M. & Moudjou, M. Studying the composition and function of centrosomes in vertebrates. Methods Cell Biol. 61 , 13–34 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. McNiven for MC44 antibodies, B.H. Toh for EEA1 antibodies, and E. Karsenti for tubulin antibodies and purified centrosomes. R. Lippe and M. Miaczynska provided Rab5–RabGDI complex, and H. McBride provided recombinant α-SNAP L294A. E.N. and F.S. are recipients of EMBO Long-term and Max Planck Fellowships, respectively. This work was supported by the Max Planck Gesellschaft, grants from the Human Frontier Science Program (G-432/96), EU TMR (ERB-CT96-0020), and Biomed (BMH4-97-2410) (to M.Z.). J.M.B. is supported by NIH grant GM559692.

Correspondence and requests for materials should be addressed to M.Z.

Supplementary information is available on Nature Cell Biology’s World-Wide Web site at http://cellbio.nature.com.

Author information

Authors and Affiliations

Authors

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nielsen, E., Severin, F., Backer, J. et al. Rab5 regulates motility of early endosomes on microtubules. Nat Cell Biol 1, 376–382 (1999). https://doi.org/10.1038/14075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/14075

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing