Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Temporal, spatial, and cell type–specific control of Cre-mediated DNA recombination in transgenic mice

Abstract

We have developed a universal system for temporal, spatial, and cell type–specific control of gene expression in mice that (1) integrates the advantages of tetracycline-controlled gene expression and Cre-recombinase-loxP site-mediated gene inactivation, and (2) simplifies schemes of animal crosses by combination of two control elements in a single transgene. Two transgenic strains were generated in which the cell type–specific control was provided by either the retinoblastoma gene promoter or the whey acidic protein promoter. Both promoters drive the expression of the reverse tetracycline-controlled transactivator (rtTA). Placed in cis configuration to the rtTA transcription unit, the rtTA-inducible promoter directs expression of Cre recombinase. In both strains crossed with cActXstopXLacZ reporter mice, which have a loxP-stop of transcription/translation-loxP-LacZ cassette driven by chicken β-actin promoter, Cre-loxP-mediated DNA recombination leading to LacZ expression was accurately regulated in a temporal, spatial, and cell type-specific manner. This approach can be applied to establishment of analogous mouse strains with virtually any promoter as systems to control gene regulation in a variety of cell types.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental design.
Figure 2: Conditional expression of LacZ mediated by doxycycline-induced Cre recombinase.
Figure 3: Expression of LacZ and Rb striated muscles of the thigh after administration of doxycycline.
Figure 4: Doxycycline-induced Cre-mediated DNA recombination in TgWAPrtTACre, cActXstopXLacZ mice.

Similar content being viewed by others

References

  1. Porter, A. Controlling your losses: conditional gene silencing in mammals. Trends Genet. 14, 73–79 (1998).

    Article  CAS  Google Scholar 

  2. Sauer, B. Inducible gene targeting in mice using the Cre/lox system. Methods 14, 381–392 ( 1998).

    Article  CAS  Google Scholar 

  3. Gu, H., Zou, Y.R. & Rajewsky, K. Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre-loxP-mediated gene targeting. Cell 73, 1155–1164 (1993).

    Article  CAS  Google Scholar 

  4. Lakso, M. et al. Targeted oncogene activation by site-specific recombination in transgenic mice. Proc. Natl. Acad. Sci. USA 89, 6232 –6236 (1992).

    Article  CAS  Google Scholar 

  5. O'Gorman, S., Fox, D.T. & Wahl, G.M. Recombinase-mediated gene activation and site-specific integration in mammalian cells. Science 251, 1351–1355 (1991).

    Article  CAS  Google Scholar 

  6. Dymecki, S.M. Flp recombinase promotes site-specific DNA recombination in embryonic stem cells and transgenic mice. Proc. Natl. Acad. Sci. USA 93, 6191–6196 (1996).

    Article  CAS  Google Scholar 

  7. Buchholz, F., Ringrose, L., Angrand, P.O., Rossi, F. & Stewart, A.F. Different thermostabilities of FLP and Cre recombinases: implications for applied site-specific recombination. Nucleic Acids Res. 24, 4256– 4262 (1996).

    Article  CAS  Google Scholar 

  8. Buchholz, F., Angrand, P.O. & Stewart, A.F. Improved properties of FLP recombinase evolved by cycling mutagenesis. Nat. Biotechnol. 16, 657–662 (1998).

    Article  CAS  Google Scholar 

  9. Kühn, R., Schwenk, F., Aguet, M. & Rajewsky, K. Inducible gene targeting in mice. Science 269, 1427– 1429 (1995).

    Article  Google Scholar 

  10. No, D., Yao, T.P. & Evans, R.M. Ecdysone-inducible gene expression in mammalian cells and transgenic mice. Proc. Natl. Acad. Sci. USA 93, 3346–3351 (1996).

    Article  CAS  Google Scholar 

  11. Schwenk, F., Kühn, R., Angrand, P.O., Rajewsky, K. & Stewart, A.F. Temporally and spatially regulated somatic mutagenesis in mice. Nucleic Acids Res. 26, 1427–1432 (1998).

    Article  CAS  Google Scholar 

  12. Danielian, P.S., Muccino, D., Rowitch, D.H., Michael, S.K. & McMahon, A.P. Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase. Curr. Biol. 8, 1323–1326 (1998).

    Article  CAS  Google Scholar 

  13. Zhang, Y. et al. Inducible site-directed recombination in mouse embryonic stem cells. Nucleic Acids Res. 24, 543–548 (1996).

    Article  CAS  Google Scholar 

  14. Brocard, J. et al. Spatio-temporally controlled site-specific somatic mutagenesis in the mouse. Proc. Natl. Acad. Sci. USA 94, 14559–14563 (1997).

    Article  CAS  Google Scholar 

  15. Kellendonk, C. et al. Regulation of Cre recombinase activity by the synthetic steroid RU 486. Nucleic Acids Res. 24, 1404– 1411 (1996).

    Article  CAS  Google Scholar 

  16. Kellendonk, C. et al. Inducible site-specific recombination in the brain. J. Mol. Biol. 285, 175–182 (1999).

    Article  CAS  Google Scholar 

  17. Shibata, H. et al. Rapid colorectal adenoma formation initiated by conditional targeting of the Apc gene. Science 278, 120– 123 (1997).

    Article  CAS  Google Scholar 

  18. Akagi, K. et al. Cre-mediated somatic site-specific recombination in mice. Nucleic Acids Res. 25, 1766–1773 (1997).

    Article  CAS  Google Scholar 

  19. Lee, Y.H., Sauer, B., Johnson, P.F. & Gonzalez, F.J. Disruption of the c/ebp alpha gene in adult mouse liver. Mol. Cell. Biol. 17, 6014–6022 (1997).

    Article  CAS  Google Scholar 

  20. Wakita, T. et al. Efficient conditional transgene expression in hepatitis C virus cDNA transgenic mice mediated by the Cre/loxP system. J. Biol. Chem. 273, 9001–9006 (1998).

    Article  CAS  Google Scholar 

  21. Wang, Y., Krushel, L.A. & Edelman, G.M. Targeted DNA recombination in vivo using an adenovirus carrying the Cre recombinase gene. Proc. Natl. Acad. Sci. USA 93, 3932–3936 (1996).

    Article  CAS  Google Scholar 

  22. Burcin, M.M., Schiedner, G., Kochanek, S., Tsai, S.Y. & O'Malley, B.W. Adenovirus-mediated regulable target gene expression in vivo. Proc. Natl. Acad. Sci. USA 96, 355–360 (1999).

    Article  CAS  Google Scholar 

  23. Kafri, T. et al. Cellular immune response to adenoviral vector infected cells does not require de novo viral gene expression: implications for gene therapy. Proc. Natl. Acad. Sci. USA 95, 11377– 11382 (1998).

    Article  CAS  Google Scholar 

  24. Anderson, W.F. Human gene therapy. Nature 392, 25– 30 (1998).

    Article  CAS  Google Scholar 

  25. Morsy, M.A. et al. An adenoviral vector deleted for all viral coding sequences results in enhanced safety and extended expression of a leptin transgene. Proc. Natl. Acad. Sci. USA 95, 7866– 7871 (1998).

    Article  CAS  Google Scholar 

  26. St-Onge, L., Furth, P.A. & Gruss, P. Temporal control of the Cre recombinase in transgenic mice by a tetracycline responsive promoter. Nucleic Acids Res. 24, 3875–3877 (1996).

    Article  CAS  Google Scholar 

  27. Gossen, M. & Bujard, H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA 89, 5547–5551 (1992).

    Article  CAS  Google Scholar 

  28. Furth, P.A. et al. Temporal control of gene expression in transgenic mice by a tetracycline-responsive promoter. Proc. Natl. Acad. Sci. USA 91, 9302–9306 (1994).

    Article  CAS  Google Scholar 

  29. Passman, R.S. & Fishman, G.I. Regulated expression of foreign genes in vivo after germline transfer. J. Clin. Invest. 94, 2421–2425 (1994).

    Article  CAS  Google Scholar 

  30. Gossen, M. et al. Transcriptional activation by tetracyclines in mammalian cells. Science 268, 1766–1769 (1995).

    Article  CAS  Google Scholar 

  31. Kistner, A. et al. Doxycycline-mediated quantitative and tissue-specific control of gene expression in transgenic mice. Proc. Natl. Acad. Sci. USA 93, 10933–10938 (1996).

    Article  CAS  Google Scholar 

  32. Böcker, R., Warnke, L. & Estler, C.J. Blood and organ concentrations of tetracycline and doxycycline in female mice. Comparison to males. Arzneimittelforschung 34, 446–448 (1984).

    PubMed  Google Scholar 

  33. Wivagg, R.T., Jaffe, J.M. & Colaizzi, J.L. Influence of pH and route of injection on acute toxicity of tetracycline in mice. J. Pharm. Sci. 65, 916–918 (1976).

    Article  CAS  Google Scholar 

  34. Blau, H.M. & Rossi, F.M.V. Tet B or not tet B: advances in tetracycline-inducible gene expression. Proc. Natl. Acad. Sci. USA 96, 797–799 (1999).

    Article  CAS  Google Scholar 

  35. Schultze, N., Burki, Y., Lang, Y., Certa, U. & Bluethmann, H. Efficient control of gene expression by single step integration of the tetracycline system in transgenic mice. Nat. Biotechnol. 14, 499–503 (1996).

    Article  CAS  Google Scholar 

  36. Chrast-Balz, J. & Hooft van Huijsduijnen, R. Bi-directional gene switching with the tetracycline repressor and a novel tetracycline antagonist. Nucleic Acids Res. 24, 2900–2904 (1996).

    Article  CAS  Google Scholar 

  37. Hofmann, A., Nolan, G.P. & Blau, H.M. Rapid retroviral delivery of tetracycline-inducible genes in a single autoregulatory cassette. Proc. Natl. Acad. Sci. USA 93, 5185–5190 (1996).

    Article  CAS  Google Scholar 

  38. A-Mohammadi, S. & Hawkins, R.E. Efficient transgene regulation from a single tetracycline-controlled positive feedback regulatory system. Gene Ther. 5, 76– 84 (1998).

    Article  CAS  Google Scholar 

  39. Harding, T.C., Geddes, B.J., Murphy, D., Knight, D. & Uney, J.B. Switching transgene expression in the brain using an adenoviral tetracycline-regulatable system. Nat. Biotechnol. 16 , 553–555 (1998).

    Article  CAS  Google Scholar 

  40. Hong, F.D. et al. Structure of the human retinoblastoma gene. Proc. Natl. Acad. Sci. USA 86, 5502–5506 (1989).

    Article  CAS  Google Scholar 

  41. Tsien, J.Z. et al. Subregion- and cell type-restricted gene knockout in mouse brain. Cell 87, 1317–1326 (1996).

    Article  CAS  Google Scholar 

  42. Zinyk, D.L., Mercer, E.H., Harris, E., Anderson, D.J. & Joyner, A.L. Fate mapping of the mouse midbrain-hindbrain constriction using a site- specific recombination system. Curr. Biol. 8, 665–668 (1998).

    Article  CAS  Google Scholar 

  43. Baron, U. et al. Generation of conditional mutants in higher eukaryotes by switching between the expression of two genes. Proc. Natl. Acad. Sci. USA 96, 1013–1018 (1999).

    Article  CAS  Google Scholar 

  44. Baron, U., Gossen, M. & Bujard, H. Tetracycline-controlled transcription in eukaryotes: novel transactivators with graded transactivation potential. Nucleic Acids Res. 25, 2723–2729 (1997).

    Article  CAS  Google Scholar 

  45. Al-Ali, W., Bissada, N.F. & Greenwell, H. The effect of local doxycycline with and without tricalcium phosphate on the regenerative healing potential of periodontal osseous defects in dogs. J. Periodontol. 60, 582– 590 (1989).

    Article  CAS  Google Scholar 

  46. Webster, G.F., Toso, S.M. & Hegemann, L. Inhibition of a model of in vitro granuloma formation by tetracyclines and ciprofloxacin. Involvement of protein kinase C. Arch. Dermatol. 130, 748–752 (1994).

    Article  CAS  Google Scholar 

  47. Larsen, T. In vitro release of doxycycline from bioabsorbable materials and acrylic strips. J. Periodontol. 61, 30– 34 (1990).

    Article  CAS  Google Scholar 

  48. Golub, L.M., Ciancio, S., Ramamamurthy, N.S., Leung, M. & McNamara, T.F. Low-dose doxycycline therapy: effect on gingival and crevicular fluid collagenase activity in humans. J. Periodontal Res. 25, 321–330 (1990).

    Article  CAS  Google Scholar 

  49. Bignon, Y.J. et al. Expression of a retinoblastoma transgene results in dwarf mice. Genes Dev. 7, 1654–1662 (1993).

    Article  CAS  Google Scholar 

  50. Chang, C.Y., Riley, D.J., Lee, E.Y. & Lee, W.H. Quantitative effects of the retinoblastoma gene on mouse development and tissue-specific tumorigenesis. Cell Growth Differ. 4, 1057– 1064 (1993).

    CAS  PubMed  Google Scholar 

  51. Lee, W.H. et al. Human retinoblastoma susceptibility gene: cloning, identification, and sequence. Science 235, 1394–1399 (1987).

    Article  CAS  Google Scholar 

  52. Friend, S.H. et al. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323, 643–646 (1986).

    Article  CAS  Google Scholar 

  53. Nikitin, A.Y., Juárez-Pérez, M.I., Li, S., Huang, L. & Lee, W.-H. RB-mediated suppression of multiple neuroendocrine neoplasia and lung metastases in Rb+/– mice. Proc. Natl. Acad. Sci. USA 96, 3916 –3921 (1999).

    Article  CAS  Google Scholar 

  54. Cordon-Cardo, C. & Richon, V.M. Expression of the retinoblastoma protein is regulated in normal human tissues. Am. J. Pathol. 144, 500–510 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Szekely, L. et al. Cell type and differentiation dependent heterogeneity in retinoblastoma protein expression in SCID mouse fetuses. Cell Growth Differ. 3, 149–156 (1992).

    CAS  PubMed  Google Scholar 

  56. Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21, 70–71 (1999).

    Article  CAS  Google Scholar 

  57. Wagner, K.U. et al. Cre-mediated gene deletion in the mammary gland. Nucleic Acids Res. 25, 4323–4330 (1997).

    Article  CAS  Google Scholar 

  58. Bayna, E.M. & Rosen, J.M. Tissue-specific, high level expression of the rat whey acidic protein gene in transgenic mice. Nucleic Acids Res. 18, 2977–2985 (1990).

    Article  CAS  Google Scholar 

  59. Pittius, C.W. et al. A milk protein gene promoter directs the expression of human tissue plasminogen activator cDNA to the mammary gland in transgenic mice. Proc. Natl. Acad. Sci. USA 85, 5874– 5878 (1988).

    Article  CAS  Google Scholar 

  60. Gu, H., Marth, J.D., Orban, P.C., Mossmann, H. & Rajewsky, K. Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science 265, 103–106 (1994).

    Article  CAS  Google Scholar 

  61. Lakso, M. et al. Efficient in vivo manipulation of mouse genomic sequences at the zygote stage. Proc. Natl. Acad. Sci. USA 93, 5860– 5865 (1996).

    Article  CAS  Google Scholar 

  62. Bonnerot, C. & Nicolas, J.F. Application of LacZ gene fusions to postimplantation development. Methods Enzymol. 225 , 451–469 (1993).

    Article  CAS  Google Scholar 

  63. Nikitin, A.Y. & Lee, W.H. Early loss of the retinoblastoma gene is associated with impaired growth inhibitory innervation during melanotroph carcinogenesis in Rb+/– mice. Genes Dev. 10, 1870–1879 (1996).

    Article  CAS  Google Scholar 

  64. Nikitin, A.Y., Rajewsky, M.F. & Pozharisski, K.M. Development of malignant fibrous histiocytoma induced by 7,12-dimethylbenz[a]anthracene in the rat: characterization of early atypical cells. Virchows Arch. B 64, 151– 159 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs. Hua Gu, Manfred Gossen, and Jeffrey M. Rosen for generous gifts of plasmids pIC-Cre, pUHD, and pBL-103, respectively, and Dr. Chia-Yang Liu for assistance during early stages of the project. We are also grateful to Dr. David J. Anderson for the cActXstopXLacZ reporter mice, and to Dr. Eva Y.-H.P. Lee for insightful discussions. Transgenic mice were generated in the Transgenic Core facility of the San Antonio Cancer Institute. This work was supported by NIH grants CA58318 and EY05758, and McDermott Endowment Funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Hwa Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Utomo, A., Nikitin, A. & Lee, WH. Temporal, spatial, and cell type–specific control of Cre-mediated DNA recombination in transgenic mice. Nat Biotechnol 17, 1091–1096 (1999). https://doi.org/10.1038/15073

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/15073

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing