Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Differential methylation of genes and retrotransposons facilitates shotgun sequencing of the maize genome

Abstract

The genomes of higher plants and animals are highly differentiated, and are composed of a relatively small number of genes and a large fraction of repetitive DNA. The bulk of this repetitive DNA constitutes transposable, and especially retrotransposable, elements1,2,3,4,5,6,7. It has been hypothesized that most of these elements are heavily methylated relative to genes, but the evidence for this is controversial. We show here that repeat sequences in maize are largely excluded from genomic shotgun libraries by the selection of an appropriate host strain because of their sensitivity to bacterial restriction-modification systems. In contrast, unmethylated genic regions are preserved in these genetically filtered libraries if the insert size is less than the average size of genes. The representation of unique maize sequences not found in plant reference genomes is also greatly enriched. This demonstrates that repeats, and not genes, are the primary targets of methylation in maize. The use of restrictive libraries in genome shotgun sequencing in plant genomes should allow significant representation of genes, reducing the number of reactions required.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The maize genome.
Figure 2: Dot-blot hybridizations of cloned sequences in four libraries.
Figure 3: Graphical comparison of clone representation in filtered maize libraries with random rice genomic clones.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. SanMiguel, P. et al. Nested retrotransposons in the intergenic regions of the maize genome. Science 274, 765– 768 (1996).

    Article  CAS  Google Scholar 

  2. Martienssen, R. Transposons, DNA methylation and gene control. Trends Genet. 14, 263–264 (1998).

    Article  CAS  Google Scholar 

  3. Bennetzen, J.L., Schrick, K., Springer, P.S., Brown, W.E. & SanMiguel, P. Active maize genes are unmodified and flanked by diverse classes of modified, highly repetitive DNA. Genome 37, 565–576 ( 1994).

    Article  CAS  Google Scholar 

  4. Moore, G. et al. Key features of cereal genome organization as revealed by the use of cytosine methylation-sensitive restriction endonucleases. Genomics 15, 472–482 ( 1993).

    Article  CAS  Google Scholar 

  5. White, S.E., Habera, L.F. & Wessler, S.R. Retrotransposons in the flanking regions of normal plant genes: a role for copia-like elements in the evolution of gene structure and expression. Proc. Natl Acad. Sci. USA 91, 11792–11796 (1994).

    Article  CAS  Google Scholar 

  6. Colot, V. & Rossignol, J.L. Eukaryotic DNA methylation as an evolutionary device. Bioessays 21, 402 –411 (1999).

    Article  CAS  Google Scholar 

  7. Hake, S. & Walbot, V. The genome of Zea mays, its organization and homology to related grasses. Chromosoma 79, 251–270 (1980).

    Article  CAS  Google Scholar 

  8. Bennetzen, J.L. The regulation of Mutator function and Mu1 transposition. UCLA Symp. Mol. Cell. Biol. 35, 343– 354 (1985).

    CAS  Google Scholar 

  9. Gruenbaum, Y., Naveh-Many, T., Cedar, H. & Razin, A. Sequence specificity of methylation in higher plant DNA. Nature 292, 860–862 ( 1981).

    Article  CAS  Google Scholar 

  10. Burr, B.A., Burr, F.A., Thompson, K.H., Albertson, M.C. & Stuber, C.W. Gene mapping with recombinant inbreds in maize. Genetics 118, 519– 526 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Blumenthal, R.M., Gregory, S.A. & Cooperider, J.S. Cloning of a restriction-modification system from Proteus vulgaris and its use in analyzing a methylase-sensitive phenotype in Escherichia coli. J. Bacteriol. 164, 501–509 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Raleigh, E.A. & Wilson, G. Escherichia coli K-12 restricts DNA containing 5-methylcytosine. Proc. Natl Acad. Sci. USA 83, 9070–9074 (1986).

    Article  CAS  Google Scholar 

  13. Arumuganathan, K. & Earle, E.D. Nuclear DNA content of some important plant species. Plant Mol. Biol. Rep. 9, 208–218 (1991).

    Article  CAS  Google Scholar 

  14. Gaut, B.S. & Doebley, J.F. DNA sequence evidence for the segmental allotetraploid origin of maize. Proc. Natl Acad. Sci. USA 94, 6809–6814 ( 1997).

    Article  CAS  Google Scholar 

  15. Raleigh, E.A. et al. McrA and McrB restriction phenotypes of some E. coli strains and implications for gene cloning. Nucleic Acids Res. 16, 1563–1575 ( 1988).

    Article  CAS  Google Scholar 

  16. Yanisch-Perron, C., Vieira, J. & Messing, J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33, 103–119 (1985).

    Article  CAS  Google Scholar 

  17. Sutherland, E., Coe, L. & Raleigh, E.A. McrBC: a multisubunit GTP-dependent restriction endonuclease. J. Mol. Biol. 225, 327– 348 (1992).

    Article  CAS  Google Scholar 

  18. Martienssen, R.A. & Richards, E.J. DNA methylation in eukaryotes Curr. Opin. Genet. Dev. 5, 234–242 (1995).

    Article  CAS  Google Scholar 

  19. SanMiguel, P., Gaut, B.S., Tikhonov, A., Nakajima, Y. & Bennetzen, J.L. The paleontology of intergene retrotransposons of maize. Nature Genet. 20, 43– 45 (1998).

    Article  CAS  Google Scholar 

  20. Adams, M.D. et al. Initial assessment of human gene diversity and expression patterns based upon 83 million nucleotides of cDNA sequence. Nature 377 (suppl.), 3–17 ( 1995).

    CAS  Google Scholar 

  21. Yoder, J.A., Walsh, C.P. & Bestor, T.H. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 13, 335– 340 (1997).

    Article  CAS  Google Scholar 

  22. Kass, S.U., Pruss, D. & Wolffe, A.P. How does DNA methylation repress transcription? Trends Genet. 13, 444–449 (1997).

    Article  CAS  Google Scholar 

  23. Grant, S.G., Jessee, J., Bloom, F.R. & Hanahan, D. Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc. Natl Acad. Sci. USA 87, 4645 –4649 (1990).

    Article  CAS  Google Scholar 

  24. Doherty, J.P. et al. Effects of mcr restriction of methylated CpG islands of the L1 transposons during packaging and plating stages of mammalian genomic library construction. Gene 98, 77– 82 (1991).

    Article  CAS  Google Scholar 

  25. Woodcock, D.M. et al. RglB facilitated cloning of highly methylated eukaryotic DNA: the human L1 transposon, plant DNA, and DNA methylated in vitro with human DNA methyltransferase. Nucleic Acids Res. 25, 4465–4482 (1988).

    Article  Google Scholar 

  26. Wessler, S.R., Bureau, T.E. & White, S.E. LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. Curr. Opin. Genet. Dev. 5, 814–821 (1995).

    Article  CAS  Google Scholar 

  27. Bird, A. Does DNA methylation control transposition of selfish elements in the germline? Trends Genet. 13, 469– 472 (1997).

    Article  CAS  Google Scholar 

  28. Williamson, M.R., Doherty, J.P. & Woodcock, D.M. Modified-cytosine restriction-system-induced recombinant cloning artefacts in Escherichia coli. Gene 124, 37–44 (1993).

    CAS  PubMed  Google Scholar 

  29. White, S. & Doebley, J. Of genes and genomes and the origin of maize. Trends Genet. 14, 327– 332 (1998).

    Article  CAS  Google Scholar 

  30. Bureau, T.E., Ronald, P.C. & Wessler, S.R. A computer based systematic survey reveals the predominance of small inverted-repeat elements in wild-type rice genes. Proc. Natl Acad. Sci. USA 93, 8524 ( 1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Gibbs, R. Wilson and J. McPherson for comments on the manuscript; J. Messing and R. Blumenthal for providing bacterial strains; and M. de la Bastide and K. Habermann for invaluable assistance in the technical management of sequencing operations at the Lita Annenberg Hazen Sequencing Center. This work was supported by grant number 97-35300-4564 from the USDA NRI Plant Genome program to W.R.M. and R.A.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Martienssen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rabinowicz, P., Schutz, K., Dedhia, N. et al. Differential methylation of genes and retrotransposons facilitates shotgun sequencing of the maize genome. Nat Genet 23, 305–308 (1999). https://doi.org/10.1038/15479

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/15479

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing