Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Gγ13 colocalizes with gustducin in taste receptor cells and mediates IP3 responses to bitter denatonium

Abstract

Gustducin is a transducin-like G protein selectively expressed in taste receptor cells. The α subunit of gustducin (α-gustducin) is critical for transduction of responses to bitter or sweet compounds. We identified a G-protein γ subunit (Gγ13) that colocalized with α-gustducin in taste receptor cells. Of 19 α-gustducin/Gγ13-positive taste receptor cells profiled, all expressed the G protein β3 subunit (Gβ3); ~80% also expressed Gβ1. Gustducin heterotrimers (α-gustducin/Gβ1/Gγ13) were activated by taste cell membranes plus bitter denatonium. Antibodies against Gγ13 blocked the denatonium-induced increase of inositol trisphosphate (IP3) in taste tissue. We conclude that gustducin heterotrimers transduce responses to bitter and sweet compounds via α-gustducin's regulation of phosphodiesterase (PDE) and Gβγ's activation of phospholipase C (PLC).

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of the predicted amino-acid sequence of Gγ13 with those of other mammalian Gγ subunits.
Figure 2: Distribution of Gγ13 mRNA in human and mouse tissues.
Figure 3: Photomicrographs of frozen sections of mouse circumvallate papillae hybridized with [33P]-labeled Gγ13 and α-gustductin RNA probes.
Figure 4: Pattern of expression of α-gustductin, Gβ1, Gβ3 and Gγ13 in taste tissue and taste cells.
Figure 5: colocalization of α-gustductin and Gγ13 in taste receptor cells from murine circumvallate papillae.
Figure 6: Tryptic analysis of interactions among Gγ13, α-gustductin and Gβ subunits.
Figure 7: Denatonium-induced IP3 production in mouse taste tissue is suppressed by anti-Gγ13 antibodies.

Similar content being viewed by others

References

  1. Roper, S. D. The cell biology of vertebrate taste receptors. Annu. Rev. Neurosci. 12, 329–353 ( 1989).

    Article  CAS  Google Scholar 

  2. Lindemann, B. Taste reception. Physiol. Rev. 76, 718– 766 (1996).

    Article  Google Scholar 

  3. Pumplin, D. W., Yu, C. & Smith, D. V. Light and dark cells of rat vallate taste buds are morphologically distinct cell types. J. Comp. Neurol. 378, 389–410 (1997).

    Article  CAS  Google Scholar 

  4. McLaughlin, S. K., McKinnon, P. J. & Margolskee, R. F. Gustducin is a taste-cell-specific G protein closely related to the transducins. Nature 357, 563–569 (1992).

    Article  CAS  Google Scholar 

  5. Boughter, J. D. Jr., Pumplin, D. W., Yu, C., Christy, R. C. & Smith, D. V. Differential expression of α-gustductin in taste bud populations of the rat and hamster. J. Neurosci. 17, 2852– 2858 (1997).

    Article  CAS  Google Scholar 

  6. Abe, K., Kusakabe, Y., Tanemura, K., Emori, Y. & Arai, S. Primary structure and cell-type specific expression of a gustatory G protein-coupled receptor related to olfactory receptors. J. Biol. Chem. 268, 12033– 12039 (1993).

    CAS  PubMed  Google Scholar 

  7. Matsuoka, I., Mori, T., Aoki, J., Sato, T. & Kurihara, K. Identification of novel members of G-protein coupled receptor superfamily expressed in bovine taste tissue. Biochem. Biophys. Res. Commun. 194, 504–511 (1993).

    Article  CAS  Google Scholar 

  8. Chaudhari, N. et al. The taste of monosodium glutamate: membrane receptors in taste buds. J. Neurosci. 16, 3817– 3826 (1996).

    Article  CAS  Google Scholar 

  9. Hoon, M. A. et al. Putative mammalian taste receptors: a class of taste-specific GPCRs with distinct topographic selectivity. Cell 96 , 541–551 (1999).

    Article  CAS  Google Scholar 

  10. Ruiz-Avila, L. et al. Coupling of bitter receptor to phosphodiesterase through transducin in taste receptor cells. Nature 376, 80– 85 (1995).

    Article  CAS  Google Scholar 

  11. Ming, D., Ruiz-Avila, L. & Margolskee, R. F. Characterization and solubilization of bitter-responsive receptors that couple to gustducin. Proc. Natl. Acad. Sci. USA 95, 8933–8938 ( 1998).

    Article  CAS  Google Scholar 

  12. Wong, G. T., Gannon, K. S. & Margolskee, R. F. Transduction of bitter and sweet taste by gustducin. Nature 381, 796–800 (1996).

    Article  CAS  Google Scholar 

  13. Kinnamon S. C. & Margolskee R.F. Mechanisms of taste transduction. Curr. Opin. Neurobiol. 6, 506–513 (1996).

    Article  CAS  Google Scholar 

  14. Rossler, P., Kroner, C., Freitag, J., Noe, J. & Breer, H. Identification of a phospholipase C beta subtype in rat taste cells. Eur. J. Cell Biol. 77, 253–261 (1998).

    Article  CAS  Google Scholar 

  15. Clapham, D. E. & Neer, E. J. G protein βγ subunits. Annu. Rev. Pharmacol. Toxicol. 37, 167–203 (1997).

    Article  CAS  Google Scholar 

  16. Hamm, H. E. The many faces of G protein signaling. J. Biol. Chem. 273, 669–672 (1998).

    Article  CAS  Google Scholar 

  17. Kleuss, C., Scherubl, H., Hescheler, J. B., Schultz, G. & Wittig, B. Selectivity in signal transduction determined by γ subunits of heterotrimeric G proteins. Science 259, 832–834 ( 1993).

    Article  CAS  Google Scholar 

  18. Kisselev, O. G., Ermolaeva, M. V. & Gautam, N. A farnesylated domain in the G protein γ subunit is a specific determinant of receptor coupling. J. Biol. Chem. 269, 21399–21402 ( 1994).

    CAS  PubMed  Google Scholar 

  19. Pitcher, J. A. et al. Role of βγ subunits of G proteins in targeting the β-adrenergic receptor kinase to membrane-bound receptors. Science 257, 1264–1267 ( 1992).

    Article  CAS  Google Scholar 

  20. Haga, K., Kameyama, K. & Haga, T. Synergistic activation of a G protein-coupled receptor kinase by G protein βγ subunits and mastoparan or related peptides. J. Biol. Chem. 269, 12594– 12599 (1994).

    CAS  PubMed  Google Scholar 

  21. Lefkowitz, R. J. G protein-coupled receptors. III. New roles for receptor kinases and β-arrestins in receptor signaling and desensitization. J. Biol. Chem. 273, 18677–18680 (1998).

    Article  CAS  Google Scholar 

  22. Fisher, K. J. & Aronson, N. N. Jr. Characterization of the cDNA and genomic sequence of a G protein γ subunit (γ 5). Mol. Cell. Biol. 12, 1585– 1591 (1992).

    Article  CAS  Google Scholar 

  23. Morishita, R. et al. Primary structure of a γ subunit of G protein, γ12, and its phosphorylation by protein kinase C. J. Biol. Chem. 270, 29469–29475 (1995).

    Article  CAS  Google Scholar 

  24. Ray, K., Kunsch, C., Bonner, L. M. & Robishaw, J. D. Isolation of cDNA clones encoding eight different human G protein γ subunits, including three novel forms designated the γ4, γ10, and γ11 subunits. J. Biol. Chem. 270, 21765–21771 (1995).

    Article  CAS  Google Scholar 

  25. Hurley, J. B., Fong, H. K., Teplow, D. B., Dreyer, W. J. & Simon, M. I. Isolation and characterization of a cDNA clone for the γ subunit of bovine retinal transducin. Proc. Natl. Acad. Sci. USA 81, 6948– 6952 (1984).

    Article  CAS  Google Scholar 

  26. Ryba, N. J. P. & Tirindelli, R. A novel GTP-binding protein γ-subunit, Gγ8, is expressed during neurogenesis in the olfactory and vomeronasal neuroepithelia. J. Biol. Chem. 270, 6757–6767 (1995).

    Article  CAS  Google Scholar 

  27. Brady, G. & Iscove, M. N. Construction of cDNA libraries from single cells. Methods Enzymol. 225, 611–623 (1993).

    Article  CAS  Google Scholar 

  28. Dulac, C. & Axel, R. A novel family of genes encoding putative pheromone receptors in mammals. Cell 83, 195–206 (1995).

    Article  CAS  Google Scholar 

  29. Ruiz, C., McPheeters, M. & Kinnamon, S. C. in Experimental Cell Biology of Taste and Olfaction, Current Techniques and Protocols (eds. Spielman, A. I. & Brand, J. G.) 79–84 (CRC Press, Boca Raton, Florida, 1995).

    Google Scholar 

  30. Wong, G. T., Ruiz-Avila, L. & Margolskee, R. F. Directing gene expression to gustducin-positive taste receptor cells. J. Neurosci. 19, 5802– 5809 (1999).

    Article  CAS  Google Scholar 

  31. Scherer, S. W., Feinstein, D. S., Oliveira, L., Tsui, L.-C. & Pittler, S. J. Gene structure and chromosome localization to 7q21.3 of the human rod photoreceptor transducin γ-subunit gene (GNGT1). Genomics 35, 241– 243 (1996).

    Article  CAS  Google Scholar 

  32. Kalyanaraman, S., Copeland, N. G., Gilbert, D. G., Jenkins, N. A. & Gautam, N. Structure and chromosomal localization of mouse G protein subunit γ4 gene. Genomics 49, 147–151 (1998).

    Article  CAS  Google Scholar 

  33. Ong, O. C., Hu, K., Rong, H., Lee, R. H. & Fung, B. K. Gene structure and chromosome localization of the Gγc subunit of human cone G-protein (GNGT2). Genomics 44 , 101–109 (1997).

    Article  CAS  Google Scholar 

  34. Rahmatullah, M., Ginnan, R. & Robishaw, J. D. Specificity of G protein αγ subunit interactions. N-terminal 15 amino acids of γ subunit specifies interaction with α subunit. J. Biol. Chem. 270, 2946– 2951 (1995).

    Article  CAS  Google Scholar 

  35. Rahmatullah, M. & Robishaw, J. D. Direct interaction of the α and γ subunits of the G proteins. Purification and analysis by limited proteolysis. J. Biol. Chem. 269, 3574–3580 (1994).

    CAS  PubMed  Google Scholar 

  36. Schmidt, C. J., Thomas, T. C., Levine, M. A. & Neer, E. J. Specificity of G protein β and γ subunit interactions. J. Biol. Chem. 267, 13807–13810 (1992).

    CAS  PubMed  Google Scholar 

  37. Tarelius, E., Boekhoff, I., Spielman, A. I. & Breer, H. in Experimental Cell Biology of Taste and Olfaction. Current Techniques & Protocols (eds. Spielman, A. I. & Brand, J. G.) 193– 202 (CRC Press, Boca Raton, Florida, 1995).

    Google Scholar 

  38. Spielman, A. I. et al. Rapid kinetics of second messenger production in bitter taste. Am. J. Physiol. 270, C926– 931 (1996).

    Google Scholar 

  39. Kolesnikov, S. S. & Margolskee, R.F. A cyclic-nucleotide-suppressible conductance activated by transducin in taste cells. Nature 376, 85–88 (1995).

    Article  CAS  Google Scholar 

  40. Misaka, T. et al. Taste buds have a cyclic nucleotide-activated channel, CNGgust. J. Biol. Chem. 272, 22623– 22629 (1997).

    Google Scholar 

  41. Avenet, P., Hofmann, F. & Lindemann, B. Transduction in taste receptor cells requires cAMP-dependent protein kinase. Nature 331, 351– 354 (1988).

    Article  CAS  Google Scholar 

  42. Striem, J. B., Naim, M. & Lindemann, B. Generation of cyclic AMP in taste buds of the rat circumvallate papilla in response to sucrose. Cell. Physiol. Biochem. 1, 46–54 (1991).

    Article  CAS  Google Scholar 

  43. Akabas, M. H., Dodd, J. & Al-Awqati, Q. A bitter substance induces a rise in intracellular calcium in a subpopulation of rat taste cells. Science 242, 1047–1050 (1988).

    Article  CAS  Google Scholar 

  44. Hwang, P. M., Verma, A., Bredt, D. S. & Snyder, S. H. Localization of phosphatidylinositol signaling components in rat taste cells: role in bitter taste transduction. Proc. Natl. Acad. Sci. USA 87, 7395–7399 (1990).

    Article  CAS  Google Scholar 

  45. Spielman, A. I., Huque, T., Nagai, H., Whitney, G. & Brand, J. G. Generation of inositol phosphates in bitter taste transduction. Physiol. Behav. 56, 1149– 1155 (1994).

    Article  CAS  Google Scholar 

  46. Spielman A. I. & Brand J. G. in Experimental Cell Biology of Taste and Olfaction. Current Techniques & Protocols (eds. Spielman, A.I. & Brand, J. G.) 25– 32 (CRC Press, Boca Raton, Florida, 1995).

    Google Scholar 

  47. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 ( 1976).

    Article  CAS  Google Scholar 

  48. Palmer, S. & Wakelam, M. J. O. n Methods in Inositide Research (ed. Irvine, R. F.) 127–134 (Raven, New York, 1990).

    Google Scholar 

  49. Chou, P. Y. & Fasman, G. D. Empirical predictions of protein conformation. Annu. Rev. Biochem. 47, 251 –276 (1978).

    Article  CAS  Google Scholar 

  50. Garnier, J., Osguthorpe, D. J. & Robson, B. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J. Mol. Biol. 120, 97–120 (1978).

    Google Scholar 

Download references

Acknowledgements

We thank N. Gautam and D. Logothetis for providing the cDNA clones for Gβ and Gγ subunits, W. He for help in isolation of taste cells, A. Kozak for help with in-situ hybridization and T. McClintock, J. Kay, L. Ruiz-Avila, E. Basyuk, L. Briggemann, R. Ramkumar and B. Knox for discussions. R.F.M. is an Associate Investigator of the Howard Hughes Medical Institute. This research was supported by NIH grants DC03155 (R.F.M.), MH57241 (M.M.), DE10754 (A.I.S.) and DC00310 (L.H.) and by grant M93-14 from the BARD foundation (A.I.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert F. Margolskee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, L., Shanker, Y., Dubauskaite, J. et al. Gγ13 colocalizes with gustducin in taste receptor cells and mediates IP3 responses to bitter denatonium. Nat Neurosci 2, 1055–1062 (1999). https://doi.org/10.1038/15981

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/15981

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing