Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Robustness in bacterial chemotaxis

Abstract

Networks of interacting proteins orchestrate the responses of living cells to a variety of external stimuli1, but how sensitive is the functioning of these protein networks to variations in theirbiochemical parameters? One possibility is that to achieve appropriate function, the reaction rate constants and enzyme concentrations need to be adjusted in a precise manner, and any deviation from these ‘fine-tuned’ values ruins the network's performance. An alternative possibility is that key properties of biochemical networks are robust2; that is, they are insensitive to the precise values of the biochemical parameters. Here we address this issue in experiments using chemotaxis of Escherichia coli, one of the best-characterized sensory systems3,4. We focus on how response and adaptation to attractant signals vary with systematic changes in the intracellular concentration of the components of the chemotaxis network. We find that some properties, such as steady-state behaviour and adaptation time, show strong variations in response to varying protein concentrations. In contrast, the precision of adaptation is robust and does not vary with the protein concentrations. This is consistent with a recently proposed molecular mechanism for exact adaptation, where robustness is a direct consequence of the network's architecture2.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tumbling frequency as a function of time for wild-type (RP437) cells.
Figure 2: Chemotaxis behaviour of cells with varying intracellular concentration of the protein CheR.

Similar content being viewed by others

References

  1. Bray, D. Protein molecules as computational elements in living cells. Nature 376, 307–312 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Barkai, N. & Leibler, S. Robustness in simple biochemical networks. Nature 387, 913–917 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Stock, J. B. & Surette, M. G. in Escherichia coli and Salmonella, Cellular and Molecular Biology (ed. Neidhardt, F. C.) 1103–1129 (ASM Press, Washington, (1996)).

    Google Scholar 

  4. Falke, J. J., Bass, R. B., Butler, S. L., Chervitz, S. A. & Danielson, M. A. The two-component signaling pathway of bacterial chemotaxis: a molecular view of signal transduction by receptors, kinases, and adaptation enzymes. Annu. Rev. Cell Dev. Biol. 13, 457–512 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bray, D., Bourret, R. B. & Simon, M. I. Computer simulation of the phosphorylation cascade controlling bacterial chemotaxis. Mol. Biol. Cell 5, 469–482 (1993).

    Article  Google Scholar 

  6. Bray, D., Levin, M. D. & Morton-Firth, C. J. Receptor clustering as a cellular mechanism to control sensitivity. Nature 393, 85–88 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Macnab, R. M. & Koshland, D. E. The gradient sensing mechanism in bacterial chemotaxis. Proc. Natl Acad. Sci. USA 69, 2509–2512 (1972).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Berg, H. C. & Tedesco, P. Transient response to chemotaxis stimuli in Escherichia coli. Proc. Natl Acad. Sci. USA 72, 3235–3239 (1975).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Segel, L. A., Goldbeter, A., Devrotes, P. N. & Knox, B. E. Amechanism for exact sensory adaptation based on receptor modification. J. Theor. Biol. 120, 151–179 (1986).

    Article  CAS  PubMed  Google Scholar 

  10. Hauri, D. C. & Ross, J. A. Amodel of excitation and adaption in bacterial chemotaxis. Biophys. J. 68, 708–722 (1995).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Spiro, P. A., Parkinson, J. S. & Othmer, H. G. Amodel of excitation and adaptation in bacterial chemotaxis. Proc. Natl Acad. Sci. USA 94, 7263–7268 (1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Asakura, S. & Honda, H. Two-state model for bacterial chemoreceptor proteins. J. Mol. Biol. 176, 349–367 (1984).

    Article  CAS  PubMed  Google Scholar 

  13. Fell, D. Understanding the Control of Metabolism (Portland Press, London, (1997)).

    Google Scholar 

  14. Alon, U. et al. Response regulator output in bacterial chemotaxis. EMBO J. 17, 4238–4248 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Berg, H. C. & Brown, D. A. Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 239, 500–504 (1972).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Parkinson, J. S. & Houts, S. Isolation and behavior of Escherichia coli deletion mutants lacking chemotaxis function. J. Bacteriol. 151, 106–113 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Wolfe, A. J., Conley, P. M., Kramer, T. J. & Berg, H. C. Reconstitution of signaling in bacterial chemotaxis. J. Bacteriol. 169, 1878–1885 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Russel, C. B., Stewart, R. C. & Dahlquist, F. W. Control of transducer methylation levels in Escherichia coli: investigation of components essential for modulation of methylation and demethylation reactions. J. Bacteriol. 171, 3609–3618 (1989).

    Article  Google Scholar 

  19. Levin, M., Morton-Firth, C., Abouhamad, W., Bourret, R. & Bray, D. Origins of individual swimming behavior in bacteria. Biophys. J. 74, 175–181 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stewart, R. C., Russel, C. B., Roth, A. F. & Dahlquist, F. W. Interaction of CheB with chemotaxis signal transduction components in Escherichia coli: modulation of the methylesterase activity and effects on cell swimming behavior. Cold Spring Harb. Symp. Quant. Biol. LIII, 27–40 (1988).

    Article  Google Scholar 

  21. Lupas, A. & Stock, J. B. Phosphorylation of an N-terminus regulatory domain activates the CheB methylesterase in bacterial chemotaxis. J. Biol. Chem. 264, 17337–17342 (1989).

    CAS  PubMed  Google Scholar 

  22. Segall, J. E., Block, S. M. & Berg, H. C. Temporal comparisons in bacterial chemotaxis. Proc. Natl Acad. Sci. USA 83, 8987–8991 (1986).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stock, J., Kersulis, G. & Koshland, D. E. Neither methylating nor demethylating enzymes are required for bacterial chemotaxis. Cell 42, 683–690 (1985).

    Article  CAS  PubMed  Google Scholar 

  24. Weis, R. M. & Koshland, D. E. Reversible methylation is essential for normal chemotaxis in Escherichia coli in gradients of aspartic acid. Proc. Natl Acad. Sci. USA 86, 83–87 (1988).

    Article  ADS  Google Scholar 

  25. Berg, H. & Turner, L. Chemotaxis of bacteria in glass capillary arrays. Biophys. J. 58, 919–930 (1990).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Weis, R. M. & Koshland, D. E. Chemotaxis in Escherichia coli proceeds efficiently from different initial tumble frequencies. J. Bacteriol. 172, 1099–1105 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kirsch, M. L. et al. Chemotactic methyltransferase promotes adaptation to repellents in Bacillus subtilis. J. Biol. Chem. 268, 25350–25356 (1993).

    CAS  PubMed  Google Scholar 

  28. Grishanin, R. N., Gauden, D. E. & Armitage, J. P. Photoresponses in Rhodobacter sphaeroides: role of photosynthetic electron transport. J. Bacteriol. 179, 24–30 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Simms, A. S., Keane, M. G. & Stock, J. B. Multiple forms of the CheB methyltransferase in bacterial chemosensing. J. Biol. Chem. 260, 10161–10168 (1985).

    CAS  PubMed  Google Scholar 

  30. Surette, M. G. & Stock, J. B. Role of α-helical coiled-coil interactions in receptor dimerization, signaling and adaptation during bacterial chemotaxis. J. Biol. Chem. 271, 17966–17973 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Leibler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alon, U., Surette, M., Barkai, N. et al. Robustness in bacterial chemotaxis. Nature 397, 168–171 (1999). https://doi.org/10.1038/16483

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/16483

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing