Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The motor protein myosin-I produces its working stroke in two steps

Abstract

Many types of cellular motility, including muscle contraction, are driven by the cyclical interaction of the motor protein myosin with actin filaments, coupled to the breakdown of ATP. It is thought that myosin binds to actin and then produces force and movement as it ‘tilts’ or ‘rocks’ into one or more subsequent, stable conformations1,2. Here we use an optical-tweezers transducer to measure the mechanical transitions made by a single myosin head while it is attached to actin. We find that two members of the myosin-I family, rat liver myosin-I of relative molecular mass 130,000 (Mr 130K) and chick intestinal brush-border myosin-I, produce movement in two distinct steps. The initial movement (of roughly 6 nanometres) is produced within 10 milliseconds of actomyosin binding, and the second step (of roughly 5.5nanometres) occurs after a variable time delay. The duration of the period following the second step is also variable and depends on the concentration of ATP. At the highest time resolution possible (about 1 millisecond), we cannot detect this second step when studying the single-headed subfragment-1 of fast skeletal muscle myosin II. The slower kinetics of myosin-I have allowed us to observe the separate mechanical states that contribute to its working stroke.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Single-molecule mechanical interactions measured for myr-1 and skeletal-muscle myosin S1.
Figure 2: Averaging method to preserve amplitude of start and end of each interaction.
Figure 3: Averaged records of myosin binding to actin.

Similar content being viewed by others

References

  1. Huxley, H. E. The mechanism of muscular contraction. Science 164, 1356–1366 (1969).

    Article  ADS  CAS  Google Scholar 

  2. Huxley, A. F. & Simmons, R. M. Proposed mechanism of force generation in striated muscle. Nature 233, 533–538 (1971).

    Article  ADS  CAS  Google Scholar 

  3. Jontes, J. D., Wilson-Kubalek, E. M. & Milligan, R. A. A32° tail swing in brush border myosin-I on ADP release. Nature 378, 751–753 (1995).

    Article  ADS  CAS  Google Scholar 

  4. Whittaker, M. et al. A 35 Å movement of smooth muscle myosin on ADP release. Nature 378, 748–751 (1995).

    Article  ADS  CAS  Google Scholar 

  5. Irving, M. et al. Tilting of the light-chain region of myosin during step length changes and active force generation in skeletal muscle. Nature 375, 688–691 (1995).

    Article  ADS  CAS  Google Scholar 

  6. Molloy, J. E., Burns, J. E., Kendrick-Jones, J., Tregear, R. T. & White, D. C. S. Movement and force produced by a single myosin head. Nature 378, 209–212 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Coluccio, L. M. & Conaty, C. Myosin-I in mammalian liver. Cell Motil. Cytoskel. 24, 189–199 (1993).

    Article  CAS  Google Scholar 

  8. Coluccio, L. M. Differential calmodulin binding to three myosin-I isoforms from liver. J. Cell. Sci 107, 2279–2284 (1994).

    CAS  PubMed  Google Scholar 

  9. Veigel, C., Bartoo, M. L., White, D. C. S., Sparrow, J. C. & Molloy, J. E. The stiffness of rabbit skeletal, acto-myosin cross-bridges determined with an optical tweezers transducer. Biophys. J. 75, 1424–1438 (1998).

    Article  CAS  Google Scholar 

  10. White, H. D. & Taylor, E. W. Energetics and mechanism of actomyosin adenosine triphosphatase. Biochemistry 15, 5818–5826 (1976).

    Article  CAS  Google Scholar 

  11. Molloy, J. E., Kyrtatas, V., Sparrow, J. C. & White, D. C. S. Kinetics of flight muscles from insects with different wingbeat frequencies. Nature 328, 449–451 (1987).

    Article  ADS  Google Scholar 

  12. Suzuki, Y., Yasunaga, T., Ohkura, R., Wakabayashi, T. & Sutoh, K. Swing of the lever arm of a myosin motor at the isomerization and phosphate release steps. Nature 396, 380–383 (1998).

    Article  ADS  CAS  Google Scholar 

  13. Jontes, J. D., Milligan, R. A., Pollard, T. D. & Ostap, M. Kinetic characterization of brush border myosin-I ATPase. Proc. Natl Acad. Sci. USA 94, 14332–14337 (1997).

    Article  ADS  CAS  Google Scholar 

  14. Williams, R. & Coluccio, L. M. Novel 130kDa rat liver myosin-I will translocate actin filaments. Cell Motil. Cytoskel. 27, 41–48 (1994).

    Article  CAS  Google Scholar 

  15. Collins, K., Sellers, J. R. & Matsudaira, P. Calmodulin dissociation regulates brush border myosin-I (110kDa-calmodulin) mechanochemical activity. J. Cell Biol. 110, 1137–1147 (1990).

    Article  CAS  Google Scholar 

  16. Toyoshima, Y. Y. et al. Myosin subfragment-1 is sufficient to move actin filaments in vitro. Nature 328, 536–539 (1987).

    Article  ADS  CAS  Google Scholar 

  17. Iwane, A. H., Kitamura, K., Tokunaga, M. & Yanagida, T. Myosin subfragment-1 is fully equipped with factors essential for motor function. Biochem. Biophys. Res. Commun. 230, 76–80 (1997).

    Article  CAS  Google Scholar 

  18. Howard, J. Molecular motors: structural adaptations to cellular functions. Nature 389, 561–567 (1997).

    Article  ADS  CAS  Google Scholar 

  19. Jontes, J. D. & Milligan, R. A. Brush border myosin-I structure and ADP-dependent conformational changes revealed by cryoelectron microscopy and image analysis. J. Cell Biol. 139, 683–693 (1997).

    Article  CAS  Google Scholar 

  20. Molloy, J. E. et al. Single molecule mechanics of heavy meromyosin and S1 interacting with rabbit or Drosophila actins using optical tweezers. Biophys. J. 68, 298s–305s (1995).

    Google Scholar 

  21. Kron, S. J. & Spudich, J. A. Fluorescent actin filaments move on myosin fixed to a glass surface. Proc. Natl Acad. Sci. USA 83, 6272–6276 (1986).

    Article  ADS  CAS  Google Scholar 

  22. Kishino, A. & Yanagida, T. Force measurements by micromanipulation of a single actin filament by glass needles. Nature 334, 74–76 (1988).

    Article  ADS  CAS  Google Scholar 

  23. Finer, J. T., Simmons, R. M. & Spudich, J. A. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368, 113–118 (1994).

    Article  ADS  CAS  Google Scholar 

  24. Colquhoun, D. & Sigworth, F. J. in Single-channel Recording 2nd edn (eds Sakmann, B. & Neher, E.) 483–587 (Plenum, New York, (1995).

    Book  Google Scholar 

Download references

Acknowledgements

We thank J. Kendrick-Jones for providing the skeletal myosin S1; A. F. Huxley and M. Peckham for helpful discussions and comments; the Royal Society, British Heart Foundation, American Cancer Society and the NIH for financial support. J.D.J. held a Howard Hughes Medical Institute fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin E. Molloy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veigel, C., Coluccio, L., Jontes, J. et al. The motor protein myosin-I produces its working stroke in two steps. Nature 398, 530–533 (1999). https://doi.org/10.1038/19104

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/19104

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing