Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neural correlates of decision variables in parietal cortex

Abstract

Decision theory proposes that humans and animals decide what to do in a given situation by assessing the relative value of each possible response. This assessment can be computed, in part, from the probability that each action will result in a gain and the magnitude of the gain expected. Here we show that the gain (or reward) a monkey can expect to realize from an eye-movement response modulates the activity of neurons in the lateral intraparietal area, an area of primate cortex that is thought to transform visual signals into eye-movement commands. We also show that the activity of these neurons is sensitive to the probability that a particular response will result in a gain. When animals can choose freely between two alternative responses, the choices subjects make and neuronal activation in this area are both correlated with the relative amount of gain that the animal can expect from each response. Our data indicate that a decision-theoretic model may provide a powerful new framework for studying the neural processes that intervene between sensation and action.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Modulation of neuronal activity by expected gain.
Figure 2: Modulation of neuronal activity by outcome probability.
Figure 3: Modulation of the activity of a single intraparietal neuron by expected gain in a free-choice task.
Figure 4: Correlation of firing rate with a behavioural estimate of the subjective value of the two movements.

Similar content being viewed by others

References

  1. Descartes, R. Treatise on Man (trans. Hall, T. S.) (Harvard Univ. Press, Cambridge, Massachusetts, (1662:1972).

    Google Scholar 

  2. Sherrington, C. The Integrative Action of the Nervous System (Yale Univ. Press, New Haven, (1906).

    Google Scholar 

  3. Pavlov, I. P. Conditioned Reflexes: An Investigation of the Physiological Activity of the Cerebral Cortex (trans. Anrep, G. V.) (Oxford Univ. Press, Oxford, (1927).

    Google Scholar 

  4. Penfield, W. The Mystery of the Mind: A Critical Study of Consciousness and the Human Brain (Princeton Univ. Press, Princeton, (1975).

    Google Scholar 

  5. Asanuma, H. & Sakata, H. Functional organization of a cortical efferent system examined with focal depth stimulation in cats. J. Neurophysiol. 30, 35–54 (1967).

    Article  Google Scholar 

  6. Glimcher, P. W. & Sparks, D. L. Movement selection in advance of action. Nature 355, 542–545 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Schall, J. D. & Hanes, D. P. Neural basis of saccade target selection in the frontal eye field during visual search. Nature 366, 467–469 (1993).

    Article  ADS  CAS  Google Scholar 

  8. Basso, M. A. & Wurtz, R. H. Modulation of neuronal activity by target uncertainty. Nature 389, 66–69 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Dorris, M. C. & Munoz, D. P. Saccadic probability influences motor preparation signals and time to saccadic initiation. J. Neurosci. 18, 7015–7026 (1998).

    Article  CAS  Google Scholar 

  10. von Holst, E. The Behavioral Physiology of Animals and Man. Selected Papers of Eric von Holst (Univ. of Miami Press, Coral Gables, Florida, (1973).

    Google Scholar 

  11. Bernstein, N. in Human Motor Actions: Bernstein Reassessed (ed. Whiting, H. T. A.) 77–119 (Elsevier, New York, (1984).

    Book  Google Scholar 

  12. Weiss, P. Self-differentiation of the basic patterns of coordination. Comp. Psych. Monographs 17, vol. 4, 1–96 (1941).

    ADS  Google Scholar 

  13. Gallistel, CR. Foraging for brain stimulation: toward a neurobiology of computation. Cognition 50, 151–170 (1994).

    Article  CAS  Google Scholar 

  14. Herrnstein, R. J. Relative and absolute strength of response as a function of frequency of reinforcement. J. Exp. Anal. Behav. 4, 267–272 (1961).

    Article  CAS  Google Scholar 

  15. DeVilliers, P. A. & Herrnstein, R. J. Toward a law of response strength. Psych. Bull. 83, 1131–1153 (1976).

    Article  Google Scholar 

  16. Staddon, J. E. R. & Motheral, S. On matching and maximizing in operant choice. Psych. Rev. 85, 436–444 (1978).

    Article  Google Scholar 

  17. Pyke, G. H., Pulliam, H. R. & Charnov, E. L. Optimal foraging: a selective review of theory and tests. Q.Rev. Biol. 52, 137–154 (1979).

    Article  Google Scholar 

  18. Stephens, D. W. & Krebs, J. R. Foraging Theory (Princeton Univ. Press, Princeton, (1986).

    Google Scholar 

  19. von Neumann, J. & Morgenstern, O. The Theory of Games and Economic Behavior (Princeton Univ. Press, Princeton, (1944).

    MATH  Google Scholar 

  20. Arnauld, A. & Nichole, P. The Art of Thinking: Port-Royal Logic (transl. Dickoff, J. & James, P.) (Bobbs-Merrill, Indianapolis, (1562:1982).

    Google Scholar 

  21. Bernoulli, D. The Works (Birkhauser, Boston, (1738:1982) transl. D. Speiser).

    Google Scholar 

  22. Kahneman, D., Slovic, P. & Tversky, A. Judgement Under Uncertainty (Cambridge Univ. Press, New York, (1982).

    Book  Google Scholar 

  23. Herrnstein, R. J. & Vaughn, W. J in Limits to Action: The Allocation of Individual Behavior (ed. Staddon, J. E. R.) 143–176 (Academic, New York, (1980).

    Book  Google Scholar 

  24. Schoener, T. W. Theory of feeding strategies. Ann. Rev. Ecol. Syst. 2, 369–404 (1971).

    Article  Google Scholar 

  25. Krebs, J. R., Kacelnik, A. & Taylor, P. Test of optimal sampling by foraging great tits. Nature 275, 27–31 (1978).

    Article  ADS  Google Scholar 

  26. Goldberg, M. E., Colby, C. L. & Duhamel, J.-R. Representation of visuomotor space in the parietal lobe of the monkey. Cold Spring Harb. Symp. Quant. Biol. 55, 729–739 (1990).

    Article  CAS  Google Scholar 

  27. Gottlieb, J. P., Kusunoki, M. & Goldberg, M. E. The representation of visual salience in monkey parietal cortex. Nature 391, 481–484 (1998).

    Article  ADS  CAS  Google Scholar 

  28. Shadlen, M. N. & Newsome, W. T. Motion perception: Seeing and deciding. Proc. Natl Acad. Sci. USA 93, 628–633 (1997).

    Article  ADS  Google Scholar 

  29. Gnadt, J. & Anderson, R. A. Memory related motor planning activity in posterior parietal cortex of monkey. Exp. Brain Res. 70, 216–220 (1988).

    CAS  PubMed  Google Scholar 

  30. Snyder, L. H., Battista, A. P. & Andersen, R. A. Coding of intention in the posterior parietal cortex. Nature 386, 167–170 (1997).

    Article  ADS  CAS  Google Scholar 

  31. Bracewell, R. M., Mazzoni, P., Barash, S. & Andersen, R. A. Motor intention activity in the macaque's lateral intraparietal area. II. Changes of motor plan. J. Neurophysiol. 76, 1457–1464 (1996).

    Article  CAS  Google Scholar 

  32. Platt, M. L. & Glimcher, P. W. Representation of prior probability and movement metrics by area LIP neurons. Soc. Neurosci. Abstr. 23, 16 (1997).

    Google Scholar 

  33. Platt, M. L. & Glimcher, P. W. Neurons in area LIP carry information correlated with movement probability and reward magnitude. Invest. Ophthalmol. Vis. Sci. 39, 326 (1998).

    Google Scholar 

  34. Platt, M. L. & Glimcher, P. W. Responses of intraparietal neurons to saccadic targets and visual distractors. J. Neurophysiol. 78, 1574–1589 (1997).

    Article  CAS  Google Scholar 

  35. Catania, A. C. Concurrent performances: a baseline for the study of reinforcement magnitude. J. Exp. Anal. Behav. 6, 299–300 (1963).

    Article  CAS  Google Scholar 

  36. Davenport, J. W., Goodrich, K. P. & Hagguist, W. W. Effects of magnitude of reinforcement in Macaca speciosa. Psych. Sci. 4, 187–188 (1966).

    Article  Google Scholar 

  37. Bechara, A., Damasio, H., Tranel, D. & Anderson, S. Dissociation of working memory from decision making within human prefrontal cortex. J. Neurosci. 18, 428–437 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Mones and S. Corathers for technical assistance; W. T. Newsome, E. M. Brannon, M. Gazzaniga, A. Handel and J. A. Movshon for comments on the manuscript and experiments; and M. N. Shadlen and W. T. Newsome for advice on analysis. This project was funded by the NEI (M.L.P.) and the McKnight Foundation (P.W.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael L. Platt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Platt, M., Glimcher, P. Neural correlates of decision variables in parietal cortex. Nature 400, 233–238 (1999). https://doi.org/10.1038/22268

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/22268

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing