Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cell-mediated cytotoxicity to SV40-specific tumour-associated antigens

Abstract

CYTOTOXIC thymus-derived lymphoctyes (T cells) from mice infected with lymphocytic choriomeningitis virus, ectromelia virus, vaccinia virus, or parainfluenza virus interact only with H–2 compatible virus-infected target cells1–6. When congenic H–2 recombinant mice7 and mice containing mutations within genes mapped at H–2K end specificities6,8 are used, recognition of virus-infected target cells by the effector lymphocytes requires compatibility at either the K or D locus of the H–2 gene complex. These observations led to the hypothesis that cytotoxic T cells recognise either a complex of viral and histocompatibility antigens or virus-induced alterations of the histocompatibility antigens. The same restriction has been described for the cytotoxic T cell response to lymphocytes modified by trinitrophenyl (TNP)9, to minor histocompatibility antigens10,11 and to the male Y antigen12. To investigate the possibility of a similarly restricted specificity of the effector cells of cell-mediated immunity to tumours, cytotoxic cells specific for SV40 tumour-associated specific antigens (SV40-TASA) were generated in two inbred strains of mice, C57BL/6J and BALB/cAn. The SV40-transformed lines C57SV (SV40-transformed C57BL/6 mouse embryo fibroblasts), MKS/Bu100 (SV40-transformed BALB/c kidney cells13) and LN-SV (SV40-transformed human skin fibroblasts14) were used as immunising and target cells (Table 1). In addition, clones of human–mouse somatic cell hybrids, obtained by fusion of LN-SV and mouse peritoneal macrophages from inbred strains15 were used. These hybrid clones contain the complete mouse genome and, in addition, one to several copies of human chromosome 7, in which the SV40 genome is presumably integrated14,15. C121, N8 and N9 cells are derived from LN-SV fused with C57BL/6 macrophages16 and C136 cells from LN-SV fused with BALB/c macrophages17. These clones express the SV40 tumour (T) antigen (a nuclear antigen)16,17, and the histocompatibility antigens of the murine parental cells (our unpublished results). Neither LN-SV nor any hybrid clones derived from LN-SV make infectious SV4018. Only after fusion with permissive monkey kidney cells can some SV40 particles be rescued. This defective virus exhibits no biological activity. Both LN-SV and human–mouse somatic cell hybrids containing the human chromosome 7 derived from LN-SV exhibit tumour-specific transplantation antigens (TSTA), as demonstrated by their ability to protect SV40-inoculated newborn hamsters from developing SV40 tumours19. Both the SV40-transformed mouse cell lines (our unpublished results) and the hybrid clones16,17 are tumorigenic in immunodeficient “nude” mice, but these cells do not grow routinely in immunocompetent syngeneic mice, probably because of strong TSTA20.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Zinkernagel, R. M., and Doherty, P. C., Nature, 248, 701–702 (1974).

    Article  ADS  CAS  Google Scholar 

  2. Doherty, P. C., and Zinkernagel, R. M., Transplant. Rev., 19, 89–120 (1974).

    CAS  PubMed  Google Scholar 

  3. Gardner, I. D., Bowern, N. A., and Blamden, R. V., Eur. J. Immun., 5, 122–127 (1975).

    Article  CAS  Google Scholar 

  4. Koszinowski, U., and Thomssen, R., Eur. J. Immun., 5, 245–251 (1975).

    Article  CAS  Google Scholar 

  5. Lewandowski, L., Gerhard, W. U., and Plamer, J. C., Infect. Immun. (in the press).

  6. Doherty, P. C., and Zinkernagel, R. M., Transplant. Rev., 29 (in the press).

  7. Zinkernagel, R. M., and Doherty, P. C., J. exp. Med., 141, 1427–1436 (1975).

    Article  CAS  Google Scholar 

  8. Zinkernagel, R. M., J. exp. Med. (in the press).

  9. Shearer, G. M., Eur. J. Immun., 4, 527–533 (1974).

    Article  CAS  Google Scholar 

  10. Bevan, M. J., Nature, 256, 419–421 (1975).

    Article  ADS  CAS  Google Scholar 

  11. Bevan, M. J., J. exp. Med., 142, 1349–1364 (1975).

    Article  CAS  Google Scholar 

  12. Gordon, R. D., Simpson, E., and Samelson, L. E., J. exp. Med., 142, 1108–1120 (1975).

    Article  CAS  Google Scholar 

  13. Dubbs, D. R., Kit, S., DeTorres, R. A., and Anken, M., J. Virol., 1, 968–979 (1967).

    Article  CAS  Google Scholar 

  14. Croce, C. M., Girardi, A. J., and Koprowski, H., Proc. natn. Acad. Sci. U.S.A., 70, 3617–3620 (1973).

    Article  ADS  CAS  Google Scholar 

  15. Croce, C. M., and Koprowski, H., J. exp. Med., 140, 1221–1229 (1974).

    Article  CAS  Google Scholar 

  16. Croce, C. M., Aden, D., and Koprowski, H., Proc. natn. Acad. Sci. U.S.A., 72, 1397–1400 (1975).

    Article  ADS  CAS  Google Scholar 

  17. Croce, C. M., Aden, D., and Koprowski, H., Science, 190, 1200–1202 (1975).

    Article  ADS  CAS  Google Scholar 

  18. Croce, C. M., Huebner, K., Girardi, A. J., and Koprowski, H., Virology, 60, 276–281 (1974).

    Article  CAS  Google Scholar 

  19. Croce, C. M., Huebner, K., Girardi, A. J., and Koprowski, H., Cold Spring Harb. Symp. quant. Biol., 39, 335–343 (1975).

    Article  Google Scholar 

  20. Wesslén, T., Acta path. microbiol. scand., 78, 479–487 (1970).

    Google Scholar 

  21. Aden, D. P., and Knowles, B. B., Immunogenetics (in the press).

  22. Doherty, P. C., and Zinkernagel, R. M., Nature, 256, 50–52 (1975).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

TRINCHIERI, G., ADEN, D. & KNOWLES, B. Cell-mediated cytotoxicity to SV40-specific tumour-associated antigens. Nature 261, 312–314 (1976). https://doi.org/10.1038/261312a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/261312a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing