Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies

Abstract

Solar cells based on dye-sensitized mesoporous films of TiO2 arelow-cost alternatives to conventional solid-state devices1. Impressive solar-to-electrical energy conversion efficiencies have been achieved with such films when used in conjunction with liquid electrolytes2. Practical advantages may be gained by the replacement of the liquid electrolyte with a solid charge-transport material. Inorganic p-type semiconductors3,4 and organic materials5,6,7,8,9 have been tested in this regard, but in all cases the incident monochromatic photon-to-electron conversion efficiency remained low. Here we describe a dye-sensitized heterojunction of TiO2 with the amorphous organic hole-transport material 2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenyl-amine)9,9′-spirobifluorene (OMeTAD; refs. 10 and 11). Photoinduced charge-carrier generation at the heterojunction is very efficient. A solar cell based on OMeTAD converts photons to electric current with a high yield of 33%.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scheme for the electron-transfer processes (inj., injection; reg., regeneration; rec., recapture; hopping) occurring in the dye-sensitized heterojunction.
Figure 2: Absorption spectra from time-resolved laser photolysis experiments.
Figure 3: Structure and spectral response of the photovoltaic devices.
Figure 4: Current-density/voltage characteristics.

Similar content being viewed by others

References

  1. O'Regan, B. & Grätzel, M. Alow-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2films. Nature 353, 737–739 (1991).

    Article  ADS  CAS  Google Scholar 

  2. Nazeeruddin, M. K. et al . Conversion of light to electricity by cis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl,Br,I,CN and SCN) on nanocrystalline TiO2electrodes. J. Am. Chem. Soc. 115, 6382–6390 (1993).

    Article  CAS  Google Scholar 

  3. O'Regan, B. & Schwarz, D. T. Large enhancement in photocurrent efficiency caused by UV illumination of the dye-sensitized heterojunction TiO2/RuLL′NCS/CuSCN: initiation and potential mechanism. Chem. Mater. 10, 1501–1509 (1998).

    Article  CAS  Google Scholar 

  4. Tennakone, K., Kumara, G. R. R. A., Kumarasinghe, A. R., Wijayantha, K. G. U. & Sirimanne, P. M. Dye-sensitized nano-porous solid-state photovoltaic cell. Semicond. Sci. Technol. 10, 1689–1693 (1995).

    Article  ADS  Google Scholar 

  5. Murakoshi, K., Kogure, R. & Yanagida, S. Solid state dye-sensitized TiO2solar cell with polypyrrole as hole transport layer. Chem. Lett. 5, 471–472 (1997).

    Article  Google Scholar 

  6. Bach, U. et al . Ultrafast hole injection from dye molecules into an organic hole conductor for dye sensitized solid state solar cells. Abstract Book, Bayreuth Polymer & Materials Research Symposium, P28 (Bayreuth, (1997).

  7. Weissörtel, F. Amorphous niedermolekulare Ladungstransportmaterialien für nanokristalline Solarzellen.Thesis, Univ. Regensburg (1996).

    Google Scholar 

  8. Grätzel, M. in Future Generation Photovoltaic TechnologiesVol. 404 (ed. McConnell, R.) 119–126 (Am. Inst. Phys., Denver, 1997).

    Google Scholar 

  9. Hagen, J. et al . Novel hybrid solar cells consisting of inorganic nanoparticles and an organic hole transport material. Synth. Met. 89, 215–220 (1997).

    Article  CAS  Google Scholar 

  10. Salbeck, J., Weissörtel, F. & Bauer, J. Spiro linked compounds for use as active materials in organic light emitting diodes. Macromol. Symp. 125, 121–132 (1997).

    Article  Google Scholar 

  11. Salbeck, J., Yu, N., Bauer, J., Weissörtel, F. & Bestgen, H. Low molecular organic glasses for blue electroluminescence. Synth. Met. 91, 209–215 (1997).

    Article  CAS  Google Scholar 

  12. Tachibana, Y., Moser, J. E., Grätzel, M., Klug, D. R. & Durrant, J. R. Subpicosecond interfacial charge separation in dye-sensitized nanocrystalline titanium dioxide films. J. Phys. Chem. 100, 20056–20062 (1996).

    Article  CAS  Google Scholar 

  13. Kavan, L. & Grätzel, M. Highly efficient semiconducting TiO2photoelectrodes prepared by aerosol pyrolysis. Electrochim. Acta 40, 643–652 (1995).

    Article  CAS  Google Scholar 

  14. Barbé, C. J. et al . Nanocrystalline titanium oxide electrodes for photovoltaic applications. J. Am. Ceram. Soc. 80, 3157–3171 (1997).

    Article  Google Scholar 

  15. Abkowitz, M. & Pai, D. M. Comparison of the drift mobility measured under transient and steady-state conditions in a prototypical hopping system. Phil. Mag. B 53, 192–216 (1986).

    ADS  Google Scholar 

  16. Enright, B., Redmond, G. & Fitzmaurice, D. Spectroscopic determination of flat-band potentials for polycrystalline TiO2electrodes in mixed-solvent systems. J. Phys. Chem. 97, 1426–1430 (1994).

    Google Scholar 

  17. Halls, J. J. M. et al . Efficient photodiodes from interpenetrating polymer networks. Nature 376, 498–500 (1995).

    Article  ADS  CAS  Google Scholar 

  18. Yu, G., Gao, J., Hummelen, J. C., Wudl, F. & Heeger, A. J. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor acceptor heterojunctions. Science 270, 1789–1791 (1995).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swiss National Science Foundation and the European Joule III programme (OFES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Grätzel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bach, U., Lupo, D., Comte, P. et al. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395, 583–585 (1998). https://doi.org/10.1038/26936

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/26936

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing