Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Protein polymorphism and the rate of loss of duplicate gene expression

Abstract

THE adaptive significance of the widespread protein polymorphism found in natural populations continues to be a central issue in population genetics1–3. Whether this variation is maintained by some form of balancing selection (the selectionist hypothesis) or by the stochastic interaction between selectively neutral mutations and genetic drift (the neutralist hypothesis) remains unclear. Also, evidence is accumulating that the simple electrophoretic separation of proteins detects a much smaller amount of the actual genetic variation present than had been assumed4–9. This has serious implications for much of the data used as evidence in the selection–neutrality controversy. If electrophoretic allozymes are actually large heterogeneous classes of alleles (that is, electromorphs10), then much of the most convincing data presented as evidence for the selectionist hypothesis may be illusory9. Therefore, methods are needed to distinguish between the selectionist and neutralist models without being dependent on detecting all or most of the genetic variation at a particular locus. I describe here a method meeting this criterion by using the relative rate of loss of duplicate gene expression to test the predictions of these two conflicting hypotheses. I report that the rate of loss for different proteins following tetraploidy in two independent groups of fish is positively correlated with the tendency for particular proteins to be polymorphic in natural populations of animals. This relationship is predicted by the ‘neutralist’ hypothesis of protein polymorphism and is in direct conflict with the predictions of the ‘selectionist’ hypothesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lewontin, R. C. The Genetic Basis of Evolutionary Change (Columbia University Press, New York, 1974).

    Google Scholar 

  2. Ayala, F. J. (ed.) Molecular Evolution (Sinauer, Sunderland, Massachusetts, 1976).

  3. Sarich, V. M. Nature 265, 24–28 (1977).

    Article  ADS  CAS  Google Scholar 

  4. Boyer, S. H. Nature 239, 453–454 (1972).

    Article  ADS  CAS  Google Scholar 

  5. Bernstein, S., Throckmorton, L. & Hubby, J. Proc. natn. Acad. Sci. U.S.A. 70, 3928–3931 (1973).

    Article  ADS  CAS  Google Scholar 

  6. Singh, R., Hubby, J. & Lewontin, R. Proc. natn. Acad. Sci. U.S.A. 71, 1808–1810 (1974).

    Article  ADS  CAS  Google Scholar 

  7. Johnson, G. B. Genetics 83, 149–167 (1976).

    PubMed  PubMed Central  CAS  Google Scholar 

  8. Coyne, J. A. Genetics 84, 593–607 (1976).

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Singh, R. S., Lewontin, R. C. & Felton, A. A. Genetics 84, 609–629 (1976).

    PubMed  PubMed Central  CAS  Google Scholar 

  10. King, J. L. & Ohta, T. Genetics 79, 681–691 (1975).

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Ohno, S. Evolution by Gene Duplication (Springer, New York, 1970).

    Book  Google Scholar 

  12. Comings, D. Nature 238, 455–457 (1972).

    Article  ADS  CAS  Google Scholar 

  13. Kimura, M. & Ohta, T. Proc. natn. Acad. Sci. U.S.A. 71, 2848–2852 (1974).

    Article  ADS  CAS  Google Scholar 

  14. MacIntyre, R. J. A. Rev. ecol. Syst. 7, 421–468 (1976).

    Article  CAS  Google Scholar 

  15. Ohno, S. Animal Cytogenetics 4 : Chordata 1: Protochordata, Cyclostoma, and Pisces (Gebruder Borntraeger, Berlin, 1974).

  16. Bogart, J. & Wasserman, A. Cytogenetics 11, 7–24 (1972).

    Article  CAS  Google Scholar 

  17. Haldane, J. B. S. Am. Nat. 67, 5–19 (1933).

    Article  Google Scholar 

  18. Nei, M. Nature 221, 40–42 (1969).

    Article  ADS  CAS  Google Scholar 

  19. Nei, M. & Roychoudhury, A. K. Am. Nat. 107, 362–372 (1973).

    Article  Google Scholar 

  20. Allendorf, F. W., Utter, R. M. & May, B. P. in Isozymes IV: Genetics and Evolution (ed. Markert, C. L.) 415–432 (Academic, New York, 1975).

    Book  Google Scholar 

  21. Ferris, S. D. & Whitt, G. S. Nature 265, 258–259 (1977).

    Article  ADS  CAS  Google Scholar 

  22. Spofford, J. B. Am. Nat. 103, 407–432 (1969); Brookhaven Symp. Biol. 23, 121–143 (1972).

    Article  Google Scholar 

  23. Allendorf, F. W. Genetics 83, 1 (1976).

    Google Scholar 

  24. Powell, J. R. Evolut. Biol. 8, 79–119 (1975).

    CAS  Google Scholar 

  25. Ayala, F. J. Proc. Sixth Berkeley Symp. Math. Stat. Prob. VI., 211–236 (1972).

  26. Johnson, G. B. Science 184, 28–37 (1974); in Molecular Evolution (ed. Ayala, F. J.) 46–59 (Sinauer, Sunderland, Massachusetts, 1976).

    Google Scholar 

  27. Kimura, M. & Ohta, T. Proc. natn. Acad. Sci. U.S.A. 72, 2761–2764 (1975); Nature 229, 467–469 (1971).

    Article  ADS  CAS  Google Scholar 

  28. Allendorf, F. W. & Utter, F. M. Genetics 74, 647–654 (1973); Hereditas 82, 19–24 (1976).

    PubMed  PubMed Central  CAS  Google Scholar 

  29. Allendorf, F. W., Mitchell, N. J., Ryman, N. & Stahl, G. Hereditas (in the press).

  30. Bailey, G. S., Wilson, A. C., Halver, J. E. & Johnson, C. L. J. biol. Chem. 245, 5927–5940 (1970).

    PubMed  CAS  Google Scholar 

  31. Selander, R. K. & Johnson, W. E. A. Rev. ecol. Syst. 4, 75–91 (1973).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

ALLENDORF, F. Protein polymorphism and the rate of loss of duplicate gene expression. Nature 272, 76–78 (1978). https://doi.org/10.1038/272076a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/272076a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing