Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

(ADP-ribose)n participates in DNA excision repair

Abstract

Chromatin proteins are covalently modified by at least five different processes; in no case has the precise physiological function been established. One of these post-synthetic, covalent modifications is effected by the enzyme poly(ADP–ribose) polymerase, which uses the coenzyme NAD+ to ADP–ribosylate chromatin proteins1–3. The modification consists largely of mono(ADP–ribose), but long, homopolymer chains of (ADP–ribose) are also present. Various physiological functions have been suggested for (ADP–ribose)n. Here we demonstrate that one function of (ADP–ribose)n is to participate in the cellular recovery from DNA damage. Specific inhibitors of poly(ADP–ribose) polymerase prevent rejoining of DNA strand breaks caused by dimethyl sulphate and cytotoxicity is enhanced thereby. The rejoining of strand breaks is prevented also by nutritionally depleting the cells of NAD.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hilz, H. & Stone, P. Rev. Physiol. Biochem. Pharmac. 76, 1–58 (1976).

    Article  CAS  Google Scholar 

  2. Hayaishi, O. & Ueda, K. A. Rev. Biochem. 46, 95–116 (1977).

    Article  CAS  Google Scholar 

  3. Tsopanakis, C., Leeson, E., Tsopanakis, A. & Shall, S. Eur. J. Biochem. 90, 337–345 (1978).

    Article  CAS  Google Scholar 

  4. Campagnari, F., Whitfield, J. F. & Bertazzoni, U. Expl Cell. Res. 42, 646–656 (1966).

    Article  CAS  Google Scholar 

  5. Scaife, J. F. Can. J. Biochem. Physiol. 41, 1469–1481 (1963).

    Article  CAS  Google Scholar 

  6. Hilz, H., Hlavica, P. & Bertram, B. Biochem. Z. 338, 283–299 (1963).

    CAS  Google Scholar 

  7. Roitt, I. M. Biochem. J. 63, 300–307 (1956).

    Article  CAS  Google Scholar 

  8. Schein, P. S., Cooney, D. A. & Vernon, M. L. Cancer Res. 27, 2323–2332 (1967).

    Google Scholar 

  9. Whish, W. J. D., Davies, M. I. & Shall, S. Biochem. biophys. Res. Commun. 65, 722–730 (1975).

    Article  CAS  Google Scholar 

  10. Davies, M. I., Shall, S. & Skidmore, C. J. Biochem. Soc. Trans. 5, 949–950 (1978).

    Article  Google Scholar 

  11. Davies, M. I., Halldorsson, H., Nduka, N., Shall, S. & Skidmore, C. J. Biochem. Soc. Trans. 6, 1056–1057 (1978).

    Article  CAS  Google Scholar 

  12. Skidmore, C. J. et al. Eur. J. Biochem. 101, 135–142 (1979).

    Article  CAS  Google Scholar 

  13. Halldorsson, H., Gray, D. A. & Shall, S. FEBS Lett. 85, 349–352 (1978).

    Article  CAS  Google Scholar 

  14. Berger, N. A., Weber, G. & Kaichi, A. S. Biochim. biophys. Acta 519, 87–104 (1978).

    Article  CAS  Google Scholar 

  15. Berger, N. A., Sikorski, G. W., Petzold, S. J. & Kurohara, K. K. (in preparation).

  16. Preiss, J., Schlaeger, R. & Hilz, H. FEBS Lett. 19, 244–246 (1971).

    Article  CAS  Google Scholar 

  17. Clark, J. B., Ferris, G. M. & Pinder, S. Biochim. biophys. Acta 238, 82–85 (1971).

    Article  CAS  Google Scholar 

  18. Shall, S. et al. Biochem. Soc. Symp. 42, 103–116 (1977).

    CAS  Google Scholar 

  19. Claycomb, W. C. Biochem. J. 154, 387–393 (1976).

    Article  CAS  Google Scholar 

  20. Levi, V., Jacobson, E. L. & Jacobson, M. K. FEBS Lett. 88, 144–146 (1978).

    Article  CAS  Google Scholar 

  21. Khan, M. G. thesis, Univ. Sussex (1977).

  22. Shall, S. J. Biochem., Tokyo 77, 2p (1975).

    Article  Google Scholar 

  23. Jacobson, E. L., Lange, R. A. & Jacobson, M. K. J. cell. Physiol. 99, 417–426 (1979).

    Article  CAS  Google Scholar 

  24. Berger, N. A., Weber, G. & Kaichi, A. S. Biochim. biophys. Acta 519, 87–104 (1978).

    Article  CAS  Google Scholar 

  25. Yoshihara, K., Tanigawa, Y., Burzio, L. & Koide, S. S. Proc. natn. Acad. Sci. U.S.A. 72, 289–293 (1975).

    Article  ADS  CAS  Google Scholar 

  26. Stone, P. R., Lorimer, W. S. & Kidwell, W. R. Eur. J. Biochem. 81, 9–18 (1977).

    Article  CAS  Google Scholar 

  27. Lorimer, W. S., Stone, P. R. & Kidwell, W. R. Expl Cell Res. 106, 261–266 (1977).

    Article  CAS  Google Scholar 

  28. Byrne, R. H., Stone, P. R. & Kidwell, W. R. Expl Cell Res. 115, 277–283 (1978).

    Article  CAS  Google Scholar 

  29. Perella, F. W. & Lea, M. A. Biochem. biophys. Res. Commun. 82, 575–581 (1978).

    Article  Google Scholar 

  30. Perella, F. W. & Lea, M. A. Cancer Res. 39, 1382–1389 (1979).

    Google Scholar 

  31. Mortelmans, K., Friedberg, E. C., Slor, H., Thomas, G. & Cleaver, J. E. Proc. natn. Acad. Sci. U.S.A. 73, 2757–2761 (1976).

    Article  ADS  CAS  Google Scholar 

  32. Jacobson, E. L. & Narasimhan, G. Fedn Proc. 38, 619 (abstr. 2065) (1979).

    Google Scholar 

  33. Juarez-Salinas, H., Sims, J. L. & Jacobson, M. K. Nature 282, 740–741 (1979).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durkacz, B., Omidiji, O., Gray, D. et al. (ADP-ribose)n participates in DNA excision repair. Nature 283, 593–596 (1980). https://doi.org/10.1038/283593a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/283593a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing