Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Heterogeneity of poly(I).poly(C)-induced human fibroblast interferon mRNA species

Abstract

Three classes of human interferons (IFNs) have been defined on the basis of their immunological properties: the ‘Le’ or ‘α’ IFN, mainly derived from leukocyte or lymphoblastoid cells; the ‘F’ or ‘β’ IFN, mainly derived from fibroblast cultures; and the‘T’, ‘immune’ or ‘γ’ IFN, mainly derived from mitogen- or antigen-stimulated lymphoid cells1. Whereas several individual species of Le IFN have been purified to homogeneity2–4, it is generally considered that F IFN represents a single protein5,6. Thus current efforts to clone human fibroblast IFN mRNA sequences are based on the observation that F IFN mRNA sediments in sucrose gradients as a single RNA species of size corresponding to 12–14 S (refs 7–10). We show here, using gel electrophoresis of mRNA, that two populations of translationally active human fibroblast IFN mRNA molecules exist—an abundant ‘14 S’ species and a scarce ‘11 S’ species. Microinjection of either species of mRNA into Xenopus oocytes leads to the synthesis of biologically active F-type human IFN. These data agree with and complement recent RNA hybridization studies of Weissenbach et al.10.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Stewart, W. E. II The Interferon System (Springer, Berlin, 1979).

    Book  Google Scholar 

  2. Rubinstein, M. et al. Proc. natn. Acad. Sci. U.S.A. 76, 640–644 (1979).

    Article  ADS  CAS  Google Scholar 

  3. Zoon, K. C., Smith, M. E., Bridgen, P. J., Zur Nedden, D. & Anfinsen, C. B. Proc. natn. Acad. Sci. U.S.A. 76, 5601–5605 (1979).

    Article  ADS  CAS  Google Scholar 

  4. Zoon, K. C. et al. Science 207, 527–528 (1980).

    Article  ADS  CAS  Google Scholar 

  5. Tan, Y. H., Barakat, F., Berthold, W., Smith-Johannsen, H. & Tan, C. J. biol. Chem. 254, 8067–8073 (1979).

    CAS  Google Scholar 

  6. Knight, E. Jr, Hunkapiller, M. W., Korant, B. D., Hardy, R. W. F. & Hood, L. E. Science 207, 525–526 (1980).

    Article  ADS  CAS  Google Scholar 

  7. Sehgal, P. B., Lyles, D. S. & Tamm, I. Virology 89, 186–198 (1978).

    Article  CAS  Google Scholar 

  8. Taniguchi, T. et al. Proc. Jap. Acad. 55, Ser. B, 464–469 (1979).

    Article  CAS  Google Scholar 

  9. Taniguchi, T., Fujii-Kurayama, Y. & Muramatsu, M. Proc. natn. Acad. Sci. U.S.A. 77, 4003–4006 (1980).

    Article  ADS  CAS  Google Scholar 

  10. Weissenbach, J. et al. Proc. natn. Acad. Sci. U.S.A. (in the press).

  11. Sehgal, P. B., Dobberstein, B. & Tamm, I. Proc. natn. Acad. Sci. U.S.A. 74, 3409–3413 (1977).

    Article  ADS  CAS  Google Scholar 

  12. Locker, J. Analyt. Biochem. 98, 358–367 (1979).

    Article  CAS  Google Scholar 

  13. Sehgal, P. B. Meth. Enzym. (Academic, New York, in the press).

  14. Bailey, J. M. & Davidson, N. Analyt. Biochem. 70, 75–85 (1976).

    Article  CAS  Google Scholar 

  15. Bryan, R. N., Cutler, G. A. & Hayashi, M. Nature 272, 81–83 (1978).

    Article  ADS  CAS  Google Scholar 

  16. Dunn, A. R., Mathews, M. B., Chow, L. T., Sambrook, J. & Keller, W. Cell 15, 511–526 (1978).

    Article  CAS  Google Scholar 

  17. Maxwell, I. H., Maxwell, F. & Hahn, W. E. Analyt. Biochem. 99, 146–160 (1979).

    Article  CAS  Google Scholar 

  18. Taniguchi, T., Ohno, S., Fujii-Kuriyama, Y. & Muramatsu, M. Gene 10, 11–15 (1980).

    Article  CAS  Google Scholar 

  19. Havell, E. A., Yamazaki, S. & Vilček, J. J. biol. Chem. 252, 4425–4427 (1977).

    CAS  Google Scholar 

  20. Davey, M. W., Sulkowski, E. & Carter, W. A. Biochemistry 15, 704–713 (1976).

    Article  CAS  Google Scholar 

  21. Senussi, O. A., Cartwright, T. & Thompson, P. Arch. Virol. 62, 323–331 (1979).

    Article  CAS  Google Scholar 

  22. Slate, D. L. & Ruddle, F. H. Cell 16, 171–180 (1979).

    Article  CAS  Google Scholar 

  23. Meager, A., Graves, H., Burke, D. C. & Swallow, D. M. Nature 280, 493–495 (1979).

    Article  ADS  CAS  Google Scholar 

  24. DeMaeyer-Guignard, J., Tovey, M. G., Grosser, I. & De Maeyer, E. Nature 271, 622–625 (1978).

    Article  ADS  CAS  Google Scholar 

  25. Taira, H. et al. Science 207, 528–530 (1980).

    Article  ADS  CAS  Google Scholar 

  26. Nagata, S. et al. Nature 284, 316–320 (1980).

    Article  ADS  CAS  Google Scholar 

  27. Mantei, N. et al. Gene 10, 1–10 (1980).

    Article  CAS  Google Scholar 

  28. Havell, E. A. et al. Proc. natn. Acad. Sci. U.S.A. 72, 2185–2187 (1975).

    Article  ADS  CAS  Google Scholar 

  29. Spohr, G., Mirault, M. -E., Imaizumi, T. & Scherrer, K. Eur. J. Biochem. 62, 313–322 (1976).

    Article  CAS  Google Scholar 

  30. Reynolds, F. H. Jr, Premkumar, E. & Pitha, P. Proc. natn. Acad. Sci. U.S.A. 72, 4881–4885 (1975).

    Article  ADS  CAS  Google Scholar 

  31. Colman, A. & Morser, J. Cell 17, 517–526 (1979).

    Article  CAS  Google Scholar 

  32. Armstrong, J. A. Appl. Microbiol. 21, 723–725 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Havell, E. A. & Vilček, J. Antimicrob. Ag. Chemother. 2, 476–484 (1972).

    Article  CAS  Google Scholar 

  34. Alwine, J. C., Kemp, D. J. & Stark, G. R. Proc. natn. Acad. Sci. U.S.A. 74, 5350–5354 (1977).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sehgal, P., Sagar, A. Heterogeneity of poly(I).poly(C)-induced human fibroblast interferon mRNA species. Nature 288, 95–97 (1980). https://doi.org/10.1038/288095a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/288095a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing