Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Denervated endplates have a dual population of junctional acetylcholine receptors

Abstract

The acetylcholine receptors (AChRs) at the neuromuscular junctions of mature innervated muscle are distinguished, in part, from extrajunctional receptors of embryonic muscle fibres by their metabolic stability1–5 and high concentration at the tops of the postjunctional folds6,7. After denervation, the rate of degradation of receptors at the neuromuscular junction progressively increases8–12 even though their local concentration does not change7,8,11. Two alternatives suggest themselves—there may be a simultaneous, progressive increase in degradation rate of all junctional receptors after denervation, or the increase may reflect the composite behaviour of two populations of junctional receptors with different metabolic stabilities: those existing before denervation (‘original AChRs’) and those inserted afterwards (‘new AChRs’). Our study has been designed to distinguish between these possibilities. We have now found that up to 8–10 days after denervation, the original receptors have a degradation half life of about 8 days which is indistinguishable from that of innervated junctional receptors. After that time, their degradation half life increases to about 2.5 days. However, all new AChRs, introduced at junctional sites after denervation, have a half life characteristic of extrajunctional receptors (about 1 day). Our data thus support the hypothesis of a composite population of receptors at denervated neuromuscular junctions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Chang, C. C. & Huang, M. C. Nature 253, 643–644 (1975).

    Article  ADS  CAS  Google Scholar 

  2. Heinemann, S., Merlie, J. & Lindstrom, J. Nature 274, 65–68 (1978).

    Article  ADS  CAS  Google Scholar 

  3. Reiness, C. G., Weinberg, C. B. & Hall, Z. W. Nature 274, 68–70 (1978).

    Article  ADS  CAS  Google Scholar 

  4. Berg, D. K. & Hall, Z. W. J. Physiol., Lond. 252, 771–789 (1975).

    Article  CAS  Google Scholar 

  5. Fambrough, D. M. Physiol Rev. 59, 165–227 (1979).

    Article  CAS  Google Scholar 

  6. Fertuck, H. C. & Salpeter, M. M. J. Cell Biol. 69, 144–158 (1976).

    Article  CAS  Google Scholar 

  7. Porter, C. W. & Barnard, E. A. Expl Neurol. 48, 542–550 (1975).

    Article  CAS  Google Scholar 

  8. Loring, R. & Salpeter, M. M. Proc. natn. Acad. Sci. U.S.A. 77, 2293–2297 (1980).

    Article  ADS  CAS  Google Scholar 

  9. Brett, T. S. & Younkin, S. G. Neurosci. Abstr. 5, 2568 (1979).

    Google Scholar 

  10. Loring, R. H. & Salpeter, M. M. J. Cell Biol. 83, 137a (1979).

    Google Scholar 

  11. Loring, R. H. & Salpeter, M. M. Neurosci. Abstr. 4, 1930 (1978).

    Google Scholar 

  12. Levitt, T. A., Loring, R. H. & Salpeter, M. M. Science 210, 4469 (1980).

    Article  Google Scholar 

  13. Chang, C. C. & Lee, C. Y. Archs int. Pharmacodyn. Thér. 144, 241–257 (1963).

    CAS  Google Scholar 

  14. Lee, C. Y., Tseng, L. F. & Chiu, T. H. Nature 215, 1177–1178 (1967).

    Article  ADS  CAS  Google Scholar 

  15. Linden, C. D. & Fambrough, D. M. Neurosci. Abstr. 4, 527–538 (1978).

    Article  Google Scholar 

  16. Gardner, J. M. & Fambrough, D. M. Cell 16, 661–674 (1979).

    Article  CAS  Google Scholar 

  17. Fertuck, H. C., Woodward, W. & Salpeter, M. M. J. Cell Biol. 66, 209–213 (1975).

    Article  CAS  Google Scholar 

  18. Merlie, J. P., Changeux, J. P. & Gros, F. Nature 264, 74–76 (1976).

    Article  ADS  CAS  Google Scholar 

  19. Devreotes, P. N. & Fambrough, D. M. J. Cell Biol. 65, 335–358 (1975).

    Article  CAS  Google Scholar 

  20. Karnovsky, M. J. & Roots, L. J. Histochem. Cytochem. 12, 219–221 (1964).

    Article  CAS  Google Scholar 

  21. Frank, E., Gautvik, K. & Sommerschild, H. Acta physiol. scand. 95, 66–76 (1975).

    Article  CAS  Google Scholar 

  22. Steinbach, J. H., Merlie, J., Heinemann, S. & Bloch, R. Proc. natn. Acad. Sci. U.S.A. 76, 3547–3551 (1979).

    Article  ADS  CAS  Google Scholar 

  23. Burden, S. Devl Biol. 61, 79–85 (1977).

    Article  CAS  Google Scholar 

  24. Burden, S. Devl Biol. 57, 317–329 (1977).

    Article  CAS  Google Scholar 

  25. Burden, S. J., Sargent, P. B. & McMahan, U. J. J. Cell Biol. 82, 412–425 (1979).

    Article  CAS  Google Scholar 

  26. Marshall, L. M., Sanes, J. R. & McMahan, U. J. Proc. natn. Acad. Sci. U.S.A. 74, 3073–3077 (1977).

    Article  ADS  CAS  Google Scholar 

  27. McMahan, U. J., Sanes, J. R. & Marshall, L. M. Nature 271, 172–174 (1978).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levitt, T., Salpeter, M. Denervated endplates have a dual population of junctional acetylcholine receptors. Nature 291, 239–241 (1981). https://doi.org/10.1038/291239a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/291239a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing