Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Frequency of fixation of adaptive mutations is higher in evolving diploid than haploid yeast populations

Abstract

Adaptive mutations are shown to have a higher frequency of fixation in evolving diploid than in haploid populations of the yeast Saccharomyces cerevisiae, providing direct evidence that it may be an evolutionary advantage to be diploid.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Williams, G. C. Sex and Evolution (Princeton University Press, 1975).

    Google Scholar 

  2. Maynard Smith, J. The Evolution of Sex (Cambridge University Press, 1978).

    Google Scholar 

  3. Svedelius, N. Proc. int. Congr. Pl. Sci. Ithaca, N.Y. 1, 457–471 (1929).

    Google Scholar 

  4. Stebbins, G. L. Variation and Evolution in Plants (Columbia University Press, 1950).

    Google Scholar 

  5. Crow, J. F. & Kimura, M. Am. Nat. 99, 439–450 (1965).

    Google Scholar 

  6. Adams, J. & Mansche, P. E. Genetics 76, 327–338 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Lewontin, R. C. The Genetic Basis of Evolutionary Change (Columbia University Press, 1974).

    Google Scholar 

  8. Crow, J. F. & Kimura, M. An Introduction to Population Genetics Theory (Harper & Row, New York, 1970).

    MATH  Google Scholar 

  9. Weiss, R. L., Kukora, J. R. & Adams, J. Proc. natn. Acad. Sci. U.S.A. 72, 794–798 (1975).

    ADS  CAS  Google Scholar 

  10. Muller, H. J. Am. Nat. 8, 118–138 (1932).

    Google Scholar 

  11. Sonneborn, T. M. in The Biology of Aging (eds Behnke, J. A., Finch, C. E. & Moment, G. B.) 361–374 (Plenum, New York, 1978).

    Google Scholar 

  12. Bernstein, H., Beyers, G. & Michod, R. Am. Nat. 117, 537–549 (1981).

    CAS  Google Scholar 

  13. King, J. L. & Jukes, T. H. Science 164, 788–798 (1969).

    ADS  CAS  Google Scholar 

  14. Kimura, M. & Ohta, T. J. molec. Evol. 1, 1–17 (1971).

    ADS  CAS  PubMed  Google Scholar 

  15. Drake, J. W. in Evolution in the Microbial World (eds Carlile, M. J. & Skehel, J. J.) 41–58 (Cambridge University Press, 1974).

    Google Scholar 

  16. Huxley, J. Evolution: The Modern Synthesis (Alien & Unwin, London, 1942).

    Google Scholar 

  17. Dayhoff, M. O. Atlas of Protein Sequence and Structure Vol. 5 (National Biomedical Research Council, Silver Spring, Maryland, 1972).

    Google Scholar 

  18. Jensen, R. A. A. Rev. Microbiol. 30, 409–425 (1976).

    CAS  Google Scholar 

  19. McIntyre, R. J. A. Rev. Ecol. Syst. 7, 421–468 (1976).

    Google Scholar 

  20. Hood, L., Campbell, J. H. & Elgin, S. C. R. A. Rev. Genet. 9, 305–323 (1975).

    CAS  Google Scholar 

  21. Ohno, S. Evolution by Gene Duplication (Springer, Berlin, 1970).

    Google Scholar 

  22. Lindsley, D. L. & Grell, E. H. Carnegie Inst. Wash. Publ. 627 (Washington D.C., 1968).

    Google Scholar 

  23. McKusick, V. A. & Chase, G. A. A. Rev. Genet. 7, 435–473 (1973).

    CAS  Google Scholar 

  24. Koch, A. L. Genetics 77, 127–142 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Atwood, K., Schneider, L. & Ryan, F. J. Cold Spring Harb. Symp. quant. Biol. 16, 345–355 (1951).

    CAS  PubMed  Google Scholar 

  26. Maynard Smith, J. & Haigh, J. Genet. Res. 23, 23–35 (1974).

    Google Scholar 

  27. Kubitschek, H. R. in Evolution in the Microbial World (eds Carlile, M. J. & Skehel, J. J.) 105–130 (Cambridge University Press, 1974).

    Google Scholar 

  28. Paquin, C. E. & Adams, J. Curr. Genet. 6, 21–24 (1982).

    CAS  PubMed  Google Scholar 

  29. Lindegren, B. W. Statistical Theory (Macmillan, New York, 1976).

    Google Scholar 

  30. Novick, A. & Szilard, L. Proc. natn. Acad. Sci. U.S.A. 36, 708–719 (1950).

    ADS  CAS  Google Scholar 

  31. Novick, A. in Perspectives in Marine Biology (ed. Buzzati-Traverso, A. A.) 533–547 (University of California Press, 1960).

    Google Scholar 

  32. Thorne, R. S. W. J. Inst. Brew. 74, 516–524 (1968).

    CAS  Google Scholar 

  33. Thorne, R. S. W. J. Inst. Brew. 76, 555–563 (1970).

    CAS  Google Scholar 

  34. Valenzuela, P., Medina, A., Rutter, W. J., Ammerer, G. & Hall, B. D. Nature 298, 347–350 (1982).

    ADS  CAS  PubMed  Google Scholar 

  35. Timmis, K. N. et al. Molec. gen. Genet. 167, 11–19 (1978).

    CAS  PubMed  Google Scholar 

  36. Adams, J., Kinney, T., Thompson, S., Rubin, L. & Helling, R. B. Genetics 91, 627–637 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Isaacs, J. in Perspectives in Marine Biology (ed. Buzzati-Traverso, A. A.) 545 (University of California Press, 1960).

    Google Scholar 

  38. Paquin, C. thesis, Univ. Michigan (1982).

  39. Holland, J. et al. Science 215, 1577–1585 (1982).

    ADS  CAS  PubMed  Google Scholar 

  40. Gibson, T. C., Scheppe, M. L. & Cox, E. C. Science 169, 686–688 (1970).

    ADS  CAS  PubMed  Google Scholar 

  41. Nestmann, E. R. & Hill, R. F. Genet. Suppl. 73, 41–44 (1973).

    Google Scholar 

  42. Nestmann, E. R. & Hill, R. F. J. Bact. 119, 33–35 (1974).

    CAS  PubMed  Google Scholar 

  43. Painter, P. R. Genetics 79, 649–660 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kimura, M. Genet. Res. 9, 25–34 (1967).

    ADS  Google Scholar 

  45. Eshel, I. Theor. Populat. Biol. 4, 196–208 (1973).

    Google Scholar 

  46. Leigh, E. Genet. Suppl. 73, 1–18 (1973).

    Google Scholar 

  47. Darlington, C. D. The Evolution of Genetic Systems 2nd edn (Basic Books, New York, 1958).

    Google Scholar 

  48. Fowell, R. R. in The Yeasts Vol. 1 (eds Rose, A. H. & Harrision, J. S.) 461–471 (Academic, New York, 1969).

    Google Scholar 

  49. Lewis, J. & Wolpert, L. J. theor. Biol. 78, 425–438 (1979).

    CAS  PubMed  Google Scholar 

  50. Van Uden, N. & Fell, J. W. Adv. Microbiol. Sea 1, 167–202 (1968).

    CAS  Google Scholar 

  51. Roman, H., Phillips, M. M. & Sands, S. M. Genetics 40, 546–561 (1955).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Helling, R. B., Kinney, T. & Adams, J. J. gen. Microbiol. 123, 129–141 (1981).

    CAS  PubMed  Google Scholar 

  53. Magni, G. & Von Borstel, R. Genetics 47, 1097–1108 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Lea, D. & Coulson, A. J. Genet. 49, 264–285 (1949).

    CAS  PubMed  Google Scholar 

  55. Wilkie, D. & Lee, B. K. Genet. Res. 6, 130–138 (1965).

    CAS  PubMed  Google Scholar 

  56. Francis, J. C. & Hansche, P. E. Genetics 70, 59–73 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Broach, J. R. in The Molecular Biology of the Yeast Saccharomyces I, 653–727 (Cold Spring Harbor Laboratory, New York, 1982).

    Google Scholar 

  58. Kubitschek, H. E. Introduction to Research with Continuous Cultures (Prentice-Hall, New Jersey, 1970).

    Google Scholar 

  59. Gottlieb, D. & Von Borstel, R. Genetics 83, 655–666 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paquin, C., Adams, J. Frequency of fixation of adaptive mutations is higher in evolving diploid than haploid yeast populations. Nature 302, 495–500 (1983). https://doi.org/10.1038/302495a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/302495a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing