Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Adrenergic activation of triiodothyronine production in brown adipose tissue

Abstract

There are several mechanisms by which homeothermic animals increase heat production, including shivering, sympathetic nervous system activation and stimulation of thyroid hormone secretion. Studies in rats have shown that increased sympathetic activity causes increased heat production in brown adipose tissue (BAT) after cold exposure or food ingestion1–3. Acute cold exposure also increases circulating thyroid hormones4 which in turn stimulate cellular metabolism through induction5 of various enzymes. Most metabolic effects of thyroxine (T4) are thought to be due to the triiodothyronine (T3) which is produced from T4 by a process of 5′ monodeiodination. There are two enzymes responsible for this reaction6–8: type I, or propylthiouracil (PTU)-sensitive iodothyronine deiodinase (5′D-I), which is reduced in hypothyroidism, stimulated in hyperthyroidism and probably provides most of the circulating T3 in the adult rat9. Type II 5′-deiodinase (5′D-II) is characteristic of brain and pituitary, is increased by thyroidectomy, is not inhibited by PTU and provides 50–80% of the intraceUular T3 in these two tissues. Recently, 5′D-II activity was identified in interscapular BAT10. As the sympathetic nervous system influences the metabolic activation of BAT, we have studied the effects of noradrenaline and acute cold exposure on BAT 5′D-II. We report here that both noradrenaline and cold exposure increase BAT 5′D-II through α1-adrenergic receptors, whereas depletion of catecholamines with α-methyl-p-tyrosine (MPT) prevents the effect of cold but not that of noradrenaline. These results suggest that the sympathetic nervous system may increase T3 production in rats by stimulating BAT 5′D-II. By increasing metabolic rate, this rise in T3 would enhance the thermogenic response to sympathetic stimulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Foster, D. O. & Frydman, M. D. Can. J. Physiol. Pharmac. 56, 110–122 (1978).

    Article  CAS  Google Scholar 

  2. Rothwell, N. J. & Stock, M. J. Nature 281, 31–35 (1979).

    Article  ADS  CAS  Google Scholar 

  3. Nedergaard, J. & Lindberg, O. Int. Rev. Cytol. 74, 187–286 (1982).

    Article  CAS  Google Scholar 

  4. Hefco, E., Krulich, L., Illner, P. & Larsen, P. R. Endocrinology 97, 1185–1195 (1975).

    Article  CAS  Google Scholar 

  5. Oppenheimer, J. H. Science 203, 971–978 (1979).

    Article  ADS  CAS  Google Scholar 

  6. Visser, T. J., Leonard, J. L., Kaplan, M. M. & Larsen, P. R. Proc. natn. Acad. Sci. U.S.A. 79, 5080–5084 (1982).

    Article  ADS  CAS  Google Scholar 

  7. Silva, J. E., Leonard, J. L., Crantz, F. R. & Larsen, P. R. J. clin. Invest. 69, 1176–1184 (1982).

    Article  CAS  Google Scholar 

  8. Visser, T. J., Kaplan, M. M., Leonard, J. L. & Larsen, P. R. J. clin. Invest. 71, 992–1002 (1983).

    Article  CAS  Google Scholar 

  9. Larsen, P. R., Silva, J. E. & Kaplan, M. M. Endocr. Rev. 2, 87–102 (1981).

    Article  CAS  Google Scholar 

  10. Leonard, J. D., Mellen, S. A. & Larsen, P. R. Endocrinology 112, 1153–1155 (1983).

    Article  CAS  Google Scholar 

  11. Girardier, L. & Schneider-Picard, G. J. Physiol., Lond. 335, 629–641 (1983).

    Article  CAS  Google Scholar 

  12. Bernal, J. & Escobar del Rey, F. Acta endocr. 78, 481–492 (1975).

    Article  CAS  Google Scholar 

  13. Van Hardeveld, C., Zuidwijk, M. J. & Kassenaar, A. A. H. Acta endocr. 91, 473–483 (1979).

    Article  CAS  Google Scholar 

  14. Rothwell, N. J., Saville, M. E. & Stock, M. J. Am. J. Physiol. 243, R339–R346 (1982).

    CAS  PubMed  Google Scholar 

  15. Oppenheimer, J. H., Schwartz, H. L. & Surks, M. I. J. clin. Invest. 51, 2493–2497 (1972).

    Article  CAS  Google Scholar 

  16. Frumess, R. D. & Larsen, P. R. Metabolism 24, 547–554 (1975).

    Article  CAS  Google Scholar 

  17. Jung, R. T., Shetty, P. S. & James, W. P. T. Nature 279, 322–323 (1979).

    Article  ADS  CAS  Google Scholar 

  18. Abuid, J., Stinson, D. A. & Larsen, P. R. J. clin. Invest. 52, 1195–1199 (1972).

    Article  Google Scholar 

  19. Fisher, D. A., Dussault, J. H., Sack, J. & Chopra, I. J. Recent Prog. Horm. Res. 23, 59–116 (1977).

    Google Scholar 

  20. Danforth, E., Burger, A. G., Ingbar, S. H. & Braverman, J. J. clin. Invest. 64, 1336–4347 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, J., Larsen, P. Adrenergic activation of triiodothyronine production in brown adipose tissue. Nature 305, 712–713 (1983). https://doi.org/10.1038/305712a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/305712a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing