Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell

Abstract

To generate an immune response, antigen-specific T-helper and T-killer cells must find each other and, because they cannot detect each other's presence, they are brought together by an antigen-loaded dendritic cell that displays antigens to both1,2,3. This three-cell interaction, however, seems nearly impossible because all three cell types are rare and migratory. Here we provide a potential solution to this conundrum. We found that the three cells need not meet simultaneously but that the helper cell can first engage and ‘condition’ the dendritic cell, which then becomes empowered to stimulate a killer cell. The first step (help) can be bypassed by modulation of the surface molecule CD40, or by viral infection of dendritic cells. These results may explain the longstanding paradoxical observation that responses to some viruses are helper-independent, and they evoke the possibility that dendritic cells may take on different functions in response to different conditioning signals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two models of the delivery of help to CD8+ killers.
Figure 2: Four ways to help a killer.
Figure 3: Summary of 117 tests showing five ways to help a killer.
Figure 4: B.71 and B7.2 are involved in stimulation of killer cells by conditioned dendritic cells.
Figure 5: Virgin killers can be primed in vivo by CD40-modulated dendritic cells.

Similar content being viewed by others

References

  1. Keene, J. A. & Forman, J. Helper activity is required for the in vivo generation of cytotoxic T lymphocytes. J. Exp. Med. 155, 768–782 (1982).

    Article  CAS  Google Scholar 

  2. Mitchison, N. A. & O'Malley, C. Three-cell-type clusters of T cells with antigen-presenting cells best explain the epitope linkage and noncognate requirements of the in vivo cytolytic response. Eur. J. Immunol. 17, 1579–1583 (1987).

    Article  CAS  Google Scholar 

  3. Bennett, S. R., Carbone, F. R., Karamalis, F., Miller, J. F. & Heath, W. R. Induction of a CD8 cytotoxic T lymphocyte response by cross-priming requires cognate CD4 T cell help. J. Exp. Med. 186, 65–70 (1997).

    Article  CAS  Google Scholar 

  4. Guerder, S. & Matzinger, P. Activation versus tolerance: a decision made by helper T cells. Cold Spring Harb. Symp. Quant. Biol. 54, 799 (1989).

    Article  Google Scholar 

  5. Rees, M. A., Rosenberg, A. S., Munitz, T. I. & Singer, A. In vivo induction of antigen-specific transplantation tolerance to Qa1a by exposure to alloantigen in the absence of T-cell help. Proc. Natl Acad. Sci. USA 87, 2765–2769 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Guerder, S. & Matzinger, P. Afail-safe mechanism for maintaining self-tolerance. J. Exp. Med. 176, 553–564 (1992).

    Article  CAS  Google Scholar 

  7. Simpson, E. & Gordon, R. D. Responsiveness to H-Y antigen: Ir gene complementation and target cell specificity. Immunol. Rev. 35, 59–75 (1977).

    Article  CAS  Google Scholar 

  8. Gray, D. & Matzinger, P. Tcell memory is short-lived in the absence of antigen. J. Exp. Med. 174, 969–974 (1991).

    Article  CAS  Google Scholar 

  9. Fuchs, E. J. & Matzinger, P. Bcells turn off virgin but not memory T cells. Science 258, 1156–1159 (1992).

    Article  ADS  CAS  Google Scholar 

  10. Ridge, J. P., Fuchs, E. J. & Matzinger, P. Neonatal tolerance revisited: turning on newborn T cells with dendritic cells [see comments]. Science 271, 1723–1726 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Boog, C. J. et al. Abolition of specific immune response defect by immunization with dendritic cells. Nature 318, 59–62 (1985).

    Article  ADS  CAS  Google Scholar 

  12. Saeland, S., Duvert, V., Moreau, I. & Banchereau, J. Human B cell precursors proliferate and express CD23 after CD40 ligation. J. Exp. Med. 178, 113–120 (1993).

    Article  CAS  Google Scholar 

  13. Cella, M. et al. Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J. Exp. Med. 184, 747–752 (1996).

    Article  CAS  Google Scholar 

  14. Yang, Y. & Wilson, J. M. CD40 ligand-dependent T cell activation: requirement of B7-CD28 signalling through CD40. Science 273, 1862–1864 (1996).

    Article  ADS  CAS  Google Scholar 

  15. Bendelac, A. et al. Mouse CD1-specific NK1 T cells: development, specificity, and function. Annu. Rev. Immunol. 15, 535–562 (1997).

    Article  CAS  Google Scholar 

  16. Buller, R. M., Holmes, K. L., Hugin, A., Frederickson, T. N. & Morse III, H. C. Induction of cytotoxic T-cell responses in vivo in the absence of CD4 helper cells. Nature 328, 77–79 (1987).

    Article  ADS  CAS  Google Scholar 

  17. Hou, S., Mo, X. Y., Hyland, L. & Doherty, P. C. Host response to Sendai virus in mice lacking class II major histocompatibility complex glycoproteins. J. Virol. 69, 1429–1434 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Tripp, R. A., Sarawar, S. R. & Doherty, P. C. Characteristics of the influenza virus-specific CD8 T cell responses in mice homozygous for disruption of the H-2IAb gene. J. Immunol. 155, 2955–2959 (1995).

    CAS  PubMed  Google Scholar 

  19. Ahmed, R., Butler, L. D. & Bhatti, L. T4 T helper cell function in vivo: differential requirement for induction of antiviral cytotoxic T cell and antibody responses. J. Virol. 62, 2102–2106 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Yong, J. L. et al. Memory B cells from human tonsils colonize mucosal epithelium and directly present antigen to T cells by rapid up-regulation of B7-1 and B7-2. Immunity 2, 239–248 (1995).

    Article  Google Scholar 

  21. Wu, Y. & Liu, Y. Viral induction of co-stimulatory activity on antigen-presenting cells bypasses the need for CD4+ T-cell help in CD8+ T-cell responses. Curr. Biol. 4, 499–505 (1994).

    Article  CAS  Google Scholar 

  22. Paliard, X. et al. Simultaneous production of IL-2, IL-4, and IFN-gamma by activated human CD4 and CD8 T cell clones. J. Immunol. 141, 849–855 (1988).

    CAS  PubMed  Google Scholar 

  23. Matzinger, P. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12, 991–1045 (1994).

    Article  CAS  Google Scholar 

  24. Katona, I. M., Urban, J. F. J, Kang, S. S., Paul, W. E. & Finkelman, F. D. IL-4 requirements for the generation of secondary in vivo IgE responses. J. Immunol. 146, 4215–4221 (1991).

    CAS  PubMed  Google Scholar 

  25. Chen, Y., Kuchroo, V. K., Inobe, J., Hafler, D. A. & Weiner, H. L. Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 265, 1237–1240 (1994).

    Article  ADS  CAS  Google Scholar 

  26. Stavnezer, J. Regulation of antibody production and class switching by TGF-beta. J. Immunol. 155, 1647–1651 (1995).

    CAS  PubMed  Google Scholar 

  27. Liu, L., Rich, B. E., Inobe, J., Chen, W. & Weiner, H. L. Apotential pathway of Th2 development during the primary immune response: IL-10 pretreated dendritic cells prime naive CD4+ T cells to secrete IL-4. Adv. Exp. Med. Biol. 417, 375–381 (1997).

    Article  CAS  Google Scholar 

  28. Wilbanks, G. A. & Streilein, J. W. Fluids from immune privileged sites endow macrophages with the capacity to induce antigen-specific immune deviation via a mechanism involving transforming growth factor-beta. Eur. J. Immunol. 22, 1031–1036 (1992).

    Article  CAS  Google Scholar 

  29. Janeway, C. A. J Approaching the asymptote? Evolution and revolution in immunology. Cold. Spring Harb. Symp. Quant. Biol. 54, 1–13 (1989).

    Article  CAS  Google Scholar 

  30. Nonacs, R., Humborg, C., Tam, J. P. & Steinman, R. M. Mechanisms of mouse spleen dendritic cell function in the generation of influenza-specific, cytolytic T lymphocytes. J. Exp. Med. 176, 519–529 (1997).

    Article  Google Scholar 

Download references

Acknowledgements

We thank C. Anderson for skin grafting; O. Lantz for the use of his unpublished TCR trangenic mouse; H. Arnheiter, A. Bendelac, L. D'Adamio, R. Germain, R. Schwartz and members of the Ghost lab (O. Alpan, C. Anderson, S. Celli, A. Frank, S. Galluci, T. Kamala, R. Weiss) for reading the manuscript and for useful suggestions; and D. Faherty, K. Hathcock and P. Linsley for blocking reagents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Paul Ridge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ridge, J., Di Rosa, F. & Matzinger, P. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393, 474–478 (1998). https://doi.org/10.1038/30989

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/30989

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing