Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Alu sequences are processed 7SL RNA genes

Abstract

7SL RNA is an abundant cytoplasmic RNA which functions in protein secretion as a component of the signal recognition particle1. Alu sequences are the most abundant family of human and rodent middle repetitive DNA sequences (reviewed in ref. 2). The primary structure of human 7SL RNA consists of an Alu sequence interrupted by a 155-base pair (bp) sequence that is unique to 7SL RNA3. In order to obtain information about the evolution of the Alu domain of 7SL RNA, we have determined the nucleotide sequence of a cDNA copy of Xenopus laevis 7SL RNA and of the 7SL RNA gene of Drosophila melanogaster. We find that the Xenopus sequence is 87% homologous with its human counterpart and the Drosophila 7SL RNA is 64% homologous to both the human and amphibian molecules. Despite the evolutionary distance between the species, significant blocks of homology to both the Alu and 7SL-specific portions of mammalian 7SL RNA can be found in the insect sequence. These results clearly demonstrate that the Alu sequence in 7SL RNA appeared in evolution before the mammalian radiation. We suggest that mammalian Alu sequences were derived from 7SL RNA (or DNA) by a deletion of the central 7SL-specific sequence, and are therefore processed 7SL RNA genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Walter, P. & Blobel, G. Nature 299, 691–698 (1982).

    Article  ADS  CAS  Google Scholar 

  2. Jelinek, W. R. & Schmid, C. W. A. Rev. Biochem. 51, 813–844 (1982).

    Article  CAS  Google Scholar 

  3. Ullu, E., Murphy, S. & Melli, M. Cell 29, 195–202 (1982).

    Article  CAS  Google Scholar 

  4. Walter, P., Ibrahimi, I. & Blobel, G. J. Cell Biol. 91, 545–550 (1981).

    Article  CAS  Google Scholar 

  5. Walter, P. & Blobel, G. J. Cell Biol. 91, 551–556 (1981).

    Article  CAS  Google Scholar 

  6. Walter, P. & Blobel, G. J. Cell Biol. 91, 557–561 (1981).

    Article  CAS  Google Scholar 

  7. Houck, C. M., Reinhart, F. P. & Schmid, C. W. J. molec. Biol. 132, 289–306 (1979).

    Article  CAS  Google Scholar 

  8. Grimaldi, G., Queen, C. & Singer, M. F. Nucleic Acids Res. 9, 5553–5568 (1981).

    Article  CAS  Google Scholar 

  9. Daniels, G. R. et al. Nucleic Acids Res. 11, 7579–7593 (1983).

    Article  ADS  CAS  Google Scholar 

  10. Krayev, A. S. et al. Nucleic Acids Res. 8, 1201–1215 (1980).

    Article  CAS  Google Scholar 

  11. Haynes, S. R., Toomey, T. P., Leinwand, L. & Jelinek, W. R. J. molec. Cell. Biol. 1, 573–583 (1981).

    Article  CAS  Google Scholar 

  12. Weiner, A. M. Cell 22, 209–218 (1980).

    Article  CAS  Google Scholar 

  13. Walter, P. & Blobel, G. Cell 34, 525–533 (1983).

    Article  CAS  Google Scholar 

  14. Hollis, G. F. et al. Nature 296, 321–325 (1982).

    Article  ADS  CAS  Google Scholar 

  15. Denison, R. A., Van Arsdell, S. W., Bernstein, L. B. & Weiner, A. M. Proc. natn. Acad. Sci. U.S.A. 78, 810–814 (1981).

    Article  ADS  CAS  Google Scholar 

  16. Gundelfinger, E. D., Krause, E., Melli, M. & Dobberstein, B. Nucleic Acids Res. 11, 7363–7374 (1983).

    Article  CAS  Google Scholar 

  17. Van Arsdell, S. W. et al. Cell 26, 11–17 (1981).

    Article  CAS  Google Scholar 

  18. Jagadeeswaran, P., Forget, B. G. & Weissman, S. M. Cell 26, 141–142 (1981).

    Article  CAS  Google Scholar 

  19. Hammarstrom, K., Westin, G. & Pettersson, U. EMBO J. 1, 737–739 (1982).

    Article  CAS  Google Scholar 

  20. Schmid, C. W. & Jelinek, W. R. Science 216, 1065–1070 (1982).

    Article  ADS  CAS  Google Scholar 

  21. Bishop, J. M. et al. Virology 42, 927–937 (1970).

    Article  CAS  Google Scholar 

  22. Ullu, E., Esposito, V. & Melli, M. J. molec. Biol. 161, 195–201 (1982).

    Article  CAS  Google Scholar 

  23. Deininger, P. L. et al. J. molec. Biol. 151, 17–33 (1981).

    Article  CAS  Google Scholar 

  24. Kalb, V. F., Glasser, S., King, D. & Lingrel, J. B. Nucleic Acids Res. 11, 2177–2184 (1983).

    Article  CAS  Google Scholar 

  25. Maxam, A. M. & Gilbert, W. Meth. Enzym. 65, 499–560 (1980).

    Article  CAS  Google Scholar 

  26. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ullu, E., Tschudi, C. Alu sequences are processed 7SL RNA genes. Nature 312, 171–172 (1984). https://doi.org/10.1038/312171a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/312171a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing