Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Diacylglycerol in large α-actinin/actin complexes and in the cytoskeleton of activated platelets

Abstract

The interaction of the cytoskeleton with plasma membranes may be mediated by vinculin1–4, α-actinin5,6 and other proteins7–11; α-actinin can interact specifically with model membranes only if they contain diacylglycerol and palmitic acid12. On stimulation of platelets by thrombin, which leads to a reorganization of the cytoskeleton13–15, diacylglycerol is produced rapidly16, simultaneously with the disappearance of phosphatidylinositol16–19. One important function of the diacylglycerol produced in platelets may be the activation of the Ca2+- and phospholipid-dependent protein kinase C20–22 We show here that, in the presence of diacylglycerol and palmitic acid, a supramolecular complex between α-actinin and actin is formed in vitro. In the electron microscope, this complex displays substructures similar to those of microfilament bundles in vivo. Furthermore, such α-actinin/lipid complexes can also be formed in situ during the stimulation of blood platelet aggregation. Thus, α-actinin may be one of the proteins directly involved in structures connecting the cytoskeleton to cell membranes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Geiger, B. Cell 18, 193–205 (1979).

    Article  CAS  PubMed  Google Scholar 

  2. Burridge, K. & Feramisco, J. R. Cell 19, 587–595 (1980).

    Article  CAS  PubMed  Google Scholar 

  3. Geiger, B., Tokuyasu, K. T., Dutton, A. H. & Singer, S. J. Proc. natn. Acad. Sci. U.S.A. 77, 4127–4131 (1980).

    Article  ADS  CAS  Google Scholar 

  4. Jokusch, B. M. & Isenberg, G. Proc. natn. Acad. Sci. U.S.A. 78, 3005–3009 (1981).

    Article  ADS  Google Scholar 

  5. Lazarides, E. & Burridge, K. Cell 6, 289–298 (1975).

    Article  CAS  PubMed  Google Scholar 

  6. Jockusch, B. M. et al. Nature 270, 628–629 (1977).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Maher, P. & Singer, S. J. Cell Motil. 3, 419–429 (1983).

    Article  CAS  PubMed  Google Scholar 

  8. Oesch, B. & Birchmeier, W. Cell 31, 671–679 (1982).

    Article  CAS  PubMed  Google Scholar 

  9. D'Angelo Siliciano, J. & Craig, S. W. Nature 300, 533–535 (1982).

    Article  ADS  CAS  Google Scholar 

  10. Burridge, K. & Connell, L. J. Cell Biol. 97, 359–367 (1983).

    Article  CAS  PubMed  Google Scholar 

  11. Repasky, E. A., Granger, B. L. & Lazarides, E. Cell 29, 821–833 (1982).

    Article  CAS  PubMed  Google Scholar 

  12. Meyer, R. K., Schindler, H. & Burger, M. M. Proc. natn. Acad. Sci. U.S.A. 79, 4280–4284 (1982).

    Article  ADS  CAS  Google Scholar 

  13. Jennings, L. K., Fox, J. E. B., Edwards, H. H. & Phillips, D. R. J. biol. Chem. 256, 6927–6932 (1981).

    CAS  PubMed  Google Scholar 

  14. Carlsson, L., Markey, F., Blikstad, I., Persson, T. & Lindberg, U. Proc. natn. Acad. Sci. U.S.A. 76, 6376–6380 (1979).

    Article  ADS  CAS  Google Scholar 

  15. Nachmias, V. T. J. Cell Biol. 86, 795–802 (1980).

    Article  CAS  PubMed  Google Scholar 

  16. Bell, R. L. & Majerus, P. W. J. biol Chem. 255, 1790–1792 (1980).

    CAS  PubMed  Google Scholar 

  17. Rittenhouse-Simmons, S. J. clin. Invest. 63, 580–587 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lapetina, E. G. Trends Pharmac. Sci. 3, 115–118 (1982).

    Article  CAS  Google Scholar 

  19. Lapetina, E. G. & Cuatrecasas, P. Biochim. biophys. Acta 573, 394–402 (1979).

    Article  CAS  PubMed  Google Scholar 

  20. Kishimoto, A., Takai, Y., Mori, T., Kikkawa, U. & Nishizuka, Y. J. biol. Chem. 255, 2273–2276 (1980).

    CAS  PubMed  Google Scholar 

  21. Nishizuka, Y. Nature 308, 693–698 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Michell, B. Trends biochem. Sci. 8, 263–265 (1983).

    Article  CAS  Google Scholar 

  23. Lazarides, E. J. Cell Biol. 68, 202–219 (1976).

    Article  CAS  PubMed  Google Scholar 

  24. Webster, R. E., Osborn, M. & Weber, K. Expl Cell Res. 117, 47–61 (1979).

    Article  Google Scholar 

  25. Feramisco, J. R. Proc. natn. Acad. Sci. U.S.A. 76, 3967–3971 (1979).

    Article  ADS  CAS  Google Scholar 

  26. Rotman, A., Heldman, J. & Linder, S. Biochemistry 21, 1713–1720 (1982).

    Article  CAS  PubMed  Google Scholar 

  27. Pribluda, V. & Rotman, A. Biochemistry 21, 2825–2832 (1982).

    Article  CAS  PubMed  Google Scholar 

  28. Phillips, D. R., Jennings, L. K. & Eduards, H. H. J. Cell. Biol. 86, 77–86 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Langer, B. G. et al. Proc. natn. Acad. Sci. U.S.A. 79, 432–435 (1982).

    Article  ADS  CAS  Google Scholar 

  30. Geiger, B., Dutton, A. H., Tokuyasu, K. T. & Singer, S. J. J. Cell Biol. 91, 614–628 (1981).

    Article  CAS  PubMed  Google Scholar 

  31. Burridge, K. & McCullough, L. J. J. supramolec. Struct. 13, 53–65 (1980).

    Article  CAS  Google Scholar 

  32. Debus, E., Weber, K. & Osborn, M. Eur. J. Cell Biol. 24, 45–52 (1981).

    CAS  PubMed  Google Scholar 

  33. Schmidt, K. G. & Rasmussen, J. W. Scand. J. Haemat. 23, 88–96 (1979).

    Article  CAS  PubMed  Google Scholar 

  34. Lämmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  Google Scholar 

  35. Bligh, E. G. & Dyer, W. I. Can. J. biochem. Biophysiol. 37, 911–917 (1959).

    CAS  Google Scholar 

  36. Kessler, S. W. J. Immun. 115, 1617–1624 (1975).

    CAS  PubMed  Google Scholar 

  37. Chamberlin, J. P. Analyt. Biochem. 98, 132–135 (1979).

    Article  ADS  Google Scholar 

  38. Schlesinger, M. S., Magee, A. I. & Schmidt, M. F. G. J. biol. Chem. 255, 10021–10024

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burn, P., Rotman, A., Meyer, R. et al. Diacylglycerol in large α-actinin/actin complexes and in the cytoskeleton of activated platelets. Nature 314, 469–472 (1985). https://doi.org/10.1038/314469a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/314469a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing