Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17

Abstract

Thirteen families have been described with an autosomal dominantly inherited dementia named frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17)1,2,3,4,5,6,7,8,9, historically termed Pick's disease10. Most FTDP-17 cases show neuronal and/or glial inclusions that stain positively with antibodies raised against the microtubule-associated protein Tau, although the Tau pathology varies considerably in both its quantity (or severity) and characteristics1,2,3,4,5,6,7,8,12. Previous studies have mapped the FTDP-17 locus to a 2-centimorgan region on chromosome 17q21.11; the tau gene also lies within this region. We have now sequenced tau in FTDP-17 families and identified three missense mutations (G272V, P301L and R406W) and three mutations in the 5′ splice site of exon 10. The splice-site mutations all destabilize a potential stem–loop structure which is probably involved in regulating the alternative splicing of exon10 (ref. 13). This causes more frequent usage of the 5′ splice site and an increased proportion of tau transcripts that include exon 10. The increase in exon 10+ messenger RNA will increase the proportion of Tau containing four microtubule-binding repeats, which is consistent with the neuropathology described in several families with FTDP-17 (refs 12, 14).

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: tau mutations in FTDP-17.
Figure 3: 5′-splice-site mutations increase incorporation of tau exon 10 into artificial mRNAs.
Figure 2: tau exon-10 5′-splice-site mutations.

Similar content being viewed by others

References

  1. Foster, N. L. et al. Frontotemporal Dementia and Parkinsonism Linked to Chromosome 17: A Consensus Statement. Annu. Neurol. 41, 706–715 (1997).

    Article  CAS  Google Scholar 

  2. Wilhelmsen, K. C., Lynch, T., Pavlou, E. & Nygaard, T. G. Localization of disinhibition-dementia-parkinsonism-amyotrophy complex to 17q21-22. Am. J. Hum. Genet. 55, 1159–1165 (1994).

    CAS  PubMed Central  Google Scholar 

  3. Baker, M. et al. Localization of frontotemporal dementia with parkinsonism in an Australian kindred to chromosome 17q21-22. Annu. Neurol. 42, 794–798 (1997).

    Article  CAS  Google Scholar 

  4. Froelich, S. et al. Mapping of a disease locus for familial rapidly progressive frontotemporal dementia to chromosome 17q12-21. Am. J. Med. Genet. 74, 380–385 ( 1997).

    Article  CAS  Google Scholar 

  5. Murrell, J. et al. Familial multiple system tauopathy with presenile dementia localized to chromosome 17. Am. J. Hum. Genet. 61, 1131–1138 (1997).

    Article  CAS  Google Scholar 

  6. Wijker, M. et al. Localization of the gene for rapidly progressive autosomal dominant parkinsonism and dementia with pallido-ponto-nigral degeneration to chromosome 17q21. Hum. Mol. Genet. 5, 151– 154 (1996).

    Article  CAS  Google Scholar 

  7. Heutink, P. et al. Hereditary fronto-temporal dementia is linked to chromosome 17q21-22. A genetic and clinico-pathological study of three Dutch families. Annu. Neurol. 41, 150– 159 (1997).

    Article  CAS  Google Scholar 

  8. Yamaoka, L. H. et al . Linkage of frontotemporal dementia to chromosome 17- clinical and neuropathological characterization of phenotype. Am. J. Hum. Genet. 59, 1306–1312 ( 1996).

    CAS  PubMed Central  Google Scholar 

  9. Dark, F. Afamily with autosomal dominant, non-Alzheimer's presenile dementia. Austr. N. Z. J. Psychiat. 31, 139–144 (1997).

    Article  CAS  Google Scholar 

  10. Constantinidis, J., Richard, J. & Tissot, R. Pick's disease: Histological and clinical classification. Eur. Neurol. 11, 208–217 (1974).

    Article  CAS  Google Scholar 

  11. Andreadis, A., Brown, W. M. & Kosik, K. S. Structure and novel exons of the human tau gene. Biochemistry 31, 10626– 10633 (1992).

    Article  CAS  Google Scholar 

  12. Spillantini, M. G., Bird, T. D. & Ghetti, B. Frontotemporal dementia and parkinsonism linked to chromosome 17: A new group of tauopathies. Brain Path. 8, 387–402 (1998).

    Article  CAS  Google Scholar 

  13. Goedert, M., Spillantini, M. G., Potier, M. C., Ulrich, J. & Crowther, R. A. Cloning and sequencing of the cDNA encoding an isoform of microtubule-associated protein tau containing four tandem repeats: differential expression of tau protein mRNAs in human brain. EMBO J. 8, 393–399 (1989).

    Article  CAS  Google Scholar 

  14. Spillantini, M. G. et al. Familial multiple system tauopathy with presenile dementia: a disease with abundant neuronal and glial tau filaments. Proc. Natl Acad. Sci. USA 94, 4113– 4118 (1997).

    Article  ADS  CAS  Google Scholar 

  15. Goedert, M. et al. Assembly of microtuble-associated protein tau into Alzheimer-like filaments induced by sulphated glycosaminoglycans. Nature 383, 550–553 (1996).

    Article  ADS  CAS  Google Scholar 

  16. Goedert, M., Spillantini, M. G., Jakes, R., Rutherford, D. & Crowther, R. A. Multiple isoforms of human microtuble-associated protein tau: sequence and localization in neurofibrillary tangles of Alzheimer's disease. Neuron 3, 519– 526 (1989).

    Article  CAS  Google Scholar 

  17. The Lund and Manchester groups. Clinical and neuropathological criteria for frontotemporal dementia. J. Neurol. Neurosurg. Psychiat. 57, 416– 418 (1994).

    Article  Google Scholar 

  18. Butner, K. A. Kirschner, M. W. J. Tau protein binds to microtubules through a flexible array of distributed weak sites. J. Cell. Biol. 115, 717–730 (1991).

    Article  CAS  Google Scholar 

  19. Reed, L. A. et al. Autosomal dominant dementia with widespread neurofibrillary tangles. Annu. Neurol. 42, 564– 572 (1997).

    Article  CAS  Google Scholar 

  20. McGeer, P. L., Schwab, C., McGeer, E. G., Haddock, R. L. & Steele, J. C. Familial nature and continuing morbidity of the amyotropic lateral sclerosis-parkinsonism dementia complex of Guam. Neurology 49, 400– 409 (1997).

    Article  CAS  Google Scholar 

  21. Goedert, M. Tau protein and the neurofibrillary pathology of Alzheimer's disease. Trends Neurosci. 16, 460–465 (1993).

    Article  CAS  Google Scholar 

  22. Church, D. M. et al . Isolation of genes from complex sources of mammalian genomic DNA using exon amplification. Nature Genet 6, 98–105 (1994).

    Article  CAS  Google Scholar 

  23. Eperon, L. P., Graham, I. R., Griffiths, A. D. & Eperon, I. C. Effects of RNA secondary structure on alternative splicing of pre-mRNA: is folding limited to a region behind the transcribing RNA polymerase? Cell 54, 393–401 ( 1988).

    Article  CAS  Google Scholar 

  24. Kuo, H.-C., Nasim, F.-U. H. & Grabowski, P. J. Control of alternative splicing by the differential binding of U1 small nuclear ribonucleoprotein particle. Science 1251, 1045–1050 ( 1991).

    Article  ADS  Google Scholar 

  25. Dickson, D. Neurodegenerative diseases with cytoskeletal pathology: a biochemical classification. Annu. Neurol. 42, 541– 543 (1997).

    Article  CAS  Google Scholar 

  26. Conrad, C. et al. Genetic evidence of the involvement of τ in progressive supranuclear palsy. Annu. Neurol. 41, 277 –281 (1997).

    Article  CAS  Google Scholar 

  27. Higgins, J. J., Litvan, I., Pho, L. T., Li, W. & Nee, L. E. Progressive supranuclear palsy is in linkage disequilibrium with the τ and not the α-synuclein gene. Neurology 50, 270–273 (1998).

    Article  CAS  Google Scholar 

  28. Freier, S. M. et al . Improved free-energy parameters for predictions of RNA duplex stability. Proc. Natl Acad. Sci. USA 83, 9373–9377 (1986).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by an NINDS (RO1) grant to MH, an NIA (MCSDA) grant to T.L. and NIA (P50) grants to A.G. and J.C.M. and to M.H., J.H. and R.C.P. Additional support was provided by the Mayo Foundation (M.H., J.H.), the International Foundation for Alzheimer Research, the Dutch Brain Research Foundation (P.H.) and Judith Mason (P. Dodd). A.G. is the recipient of an NIH career development award (NIA). C.L.L. was a Washington University Alzheimer's Disease Research Center postdoctoral fellow. P.R. is the recipient of a TMG of EU grant. J.M.K. is the recipient of an NSADA award. T.L. is the recipient of Irving Scholar, NARSAD and Parkins's Disease Foundation awards. We thank the Mayo Clinic Molecular Biology Core Facility for sequencing and acknowledge the support of the Dutch Brain Bank (W.K., R.R.), the Michigan ADRC Brain Bank and the Columbia University Brain Bank. The participation of the families has been crucial.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mike Hutton or Peter Heutink.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hutton, M., Lendon, C., Rizzu, P. et al. Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393, 702–705 (1998). https://doi.org/10.1038/31508

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/31508

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing