Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Two tandemly organized human genes encoding the T-cell γ constant-region sequences show multiple rearrangement in different T-cell types

Abstract

The recent detailed analysis of genes that undergo rearrangement in T cells has shown that the T-cell receptor genes encoding α and β-chains are involved in specific alterations in T-cell DNA analogous to the immunoglobulin genes1–9. A third type of gene, designated γ, has been isolated from mouse cytotoxic T lymphocytes10, and evidence suggests that the mouse displays very limited diversity in this gene system11, having only three variable-region (V) genes and three constant-region (C) genes12. The function of the so-called T-cell γ gene is unknown. We have isolated genomic genes encoding the human homologue of the mouse T-cell γ gene; as there is no evidence that this T-cell rearranging gene is anything to do with the T3 molecule, we have designated the human T-cell rearranging gene as TRG γ (ref. 13), to avoid confusion with the T3 γ-chain, and have shown that the gene locus maps to chromosome 7 in humans13. We now report that human DNA contains two tandemly arranged TRG γ constant-region genes about 16 kilobases apart. These two genes show multiple rearrangement patterns in a variety of T cells, including helper and cytotoxic/suppressor type, as well as in all forms of T-cell leukaemia. Our results indicate variability of this T-cell gene system in man compared with the analogous system in mouse.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Chein, Y.-H. et al. Nature 312, 31–35 (1984).

    Article  ADS  Google Scholar 

  2. Chein, Y.-H., Gascoigne, N. R. J., Kavaler, J., Lee, N. E. & Davis, M. M. Nature 309, 322–326 (1984).

    Article  ADS  Google Scholar 

  3. Clark, S. P., Yoshikai, Y., Siu, G., Taylor, S., Hood, L. & Mak, T. W. Nature 311, 387–389 (1984).

    Article  ADS  CAS  Google Scholar 

  4. Hedrick, S. M., Nielsen, A. E., Kavaler, J., Cohen, D. I. & Davis, M. M. Nature 308, 153–158 (1984).

    Article  ADS  CAS  Google Scholar 

  5. Saito, H. et al. Nature 312, 36–40 (1984).

    Article  ADS  CAS  Google Scholar 

  6. Sim, G. K. et al. Nature 312, 771–775 (1984).

    Article  ADS  CAS  Google Scholar 

  7. Sims, J. E., Tunnacliffe, A., Smith, W. S. & Rabbitts, T. H. Nature 312, 541–545 (1984).

    Article  ADS  CAS  Google Scholar 

  8. Siu, G. et al. Cell 37, 381–391 (1984).

    Article  Google Scholar 

  9. Yanagi, Y. et al. Nature 308, 145–149 (1984).

    Article  ADS  CAS  Google Scholar 

  10. Saito, H. et al. Nature 309, 757–762 (1984).

    Article  ADS  CAS  Google Scholar 

  11. Kranz, D. M. et al. Nature 313, 752–755 (1985).

    Article  ADS  CAS  Google Scholar 

  12. Hayday, A. C. et al. Cell 40, 259–269 (1985).

    Article  CAS  Google Scholar 

  13. Rabbitts, T. H. et al. EMBO J. 4, 1461–1465 (1985).

    Article  CAS  Google Scholar 

  14. Snodgrass, H. R., Dembic, Z., Steinmetz, M. & von Boehmer, H. Nature 315, 232–233 (1985).

    Article  ADS  CAS  Google Scholar 

  15. Hamlyn, P. H. & Rabbitts, T. H. Nature 304, 135–139 (1983).

    Article  ADS  CAS  Google Scholar 

  16. Sanger, F., Coulson, A. R., Barrell, B. G., Smith, A. J. H. & Roe, B. A. J. molec. Biol 143, 161–178 (1980).

    Article  CAS  Google Scholar 

  17. Alitalo, K., Schwab, M., Lin, C. C., Varmus, H. E. & Bishop, J. M. Proc. natn. Acad. Sci. U.S.A. 80, 1707–1711 (1983).

    Article  ADS  CAS  Google Scholar 

  18. Toyonaga, B., Yanagi, Y., Suciu-Foca, N., Minden, M. & Mak, T. W. Nature 311, 385–387 (1984).

    Article  ADS  CAS  Google Scholar 

  19. Rabbitts, T. H. et al. EMBO J. (in the press).

  20. Minowada, J. et al. Current Concepts in Human Immunobiology (eds Serrou, B. et al.) 75–84 (Elsevier, Amsterdam, (1982).

    Google Scholar 

  21. Greaves, M. F. et al. Leukaemia Res. 5, 281–299 (1981).

    Article  CAS  Google Scholar 

  22. Southern, E. M. J. molec. Biol. 98, 503–517 (1975).

    Article  CAS  Google Scholar 

  23. Vieira, J. & Messing, J. Gene 19, 259–268 (1982).

    Article  CAS  Google Scholar 

  24. Bernheim, A., Berger, R. & Lenoir, G. Cancer Genet. Cytogenet. 3, 307–315 (1981).

    Article  CAS  Google Scholar 

  25. Klein, E. et al. Cancer Res. 28, 1300–1310 (1968).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lefranc, MP., Rabbitts, T. Two tandemly organized human genes encoding the T-cell γ constant-region sequences show multiple rearrangement in different T-cell types. Nature 316, 464–466 (1985). https://doi.org/10.1038/316464a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/316464a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing