Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Allosteric effects of DNA on transcriptional regulators

Abstract

Selective gene transcription is mediated in part by regulatory proteins that bind to DNA response elements. These regulatory proteins receive global information from signal-transduction events. But transcriptional regulators may also be modified in an allosteric manner by response elements themselves to generate the pattern of regulation that is appropriate to an individual gene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Different effects of DNA response elements on regulator function.
Figure 2: A simple model for control of glucocorticoid-receptor (GR) function by DNA sequence.

Similar content being viewed by others

References

  1. Ptashne, M. How eukaryotic transcriptional activators work. Nature 335, 683–689 (1988).

    Article  ADS  CAS  Google Scholar 

  2. Nguyen, J. T. & Lim, W. A. How Src exercises self-restraint. Nature Struct. Biol. 4, 256– 260 (1997).

    Article  CAS  Google Scholar 

  3. Luo, X. & Sawadogo, M. Functional domains of the transcription factor USD2: atypical nuclear localization signals and context-dependent transcriptional activation domains. Mol. Cell. Biol. 16, 1367–1375 (1996).

    Article  CAS  Google Scholar 

  4. Johansen, F. E. & Prywes, R. Identification of transcriptional activation and inhibitory domains in serum response factor (SRF) by using GAL4-SRF constructs. Mol. Cell. Biol. 13, 4640–4647 (1993).

    Article  CAS  Google Scholar 

  5. Li, X. Y. & Green, M. R. Intramolecular inhibition of activating transcription factor-2 function by its DNA-binding domain. Genes Dev. 10, 517–527 ( 1996).

    Article  CAS  Google Scholar 

  6. Brehm, A., Ohbo, K. & Schöler, H. The carboxy-terminal transactivation domain of Oct-4 acquires cell specificity through the POU domain. Mol. Cell. Biol. 17, 154–162 ( 1997).

    Article  CAS  Google Scholar 

  7. Petersen, J. M. et al. Modulation of transcription factor Ets-1 DNA binding: DNA-induced unfolding of an alpha helix. Science 269, 1866–1869 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Meierhans, D. et al. DNA binding specificity of the basic-helix-loop-helix protein MASH-1. Biochemistry 34, 11026– 11036 (1995).

    Article  CAS  Google Scholar 

  9. Weiss, M. A. et al. Folding transition in the DNA-binding domain of GCN4 on specific binding to DNA. Nature 347, 575– 578 (1990).

    Article  ADS  CAS  Google Scholar 

  10. Shuman, J. D., Vinson, C. R. & McKnight, S. L. Evidence of changes in protease sensitivity and subunit exchange rate on DNA binding by C/EBP. Science 249, 771–774 (1990).

    Article  ADS  CAS  Google Scholar 

  11. . Patel, L., Abate, C. & Curran, T. Altered protein conformation on DNA binding by Fos and Jun. Nature 347, 572–575 (1990).

    Article  ADS  CAS  Google Scholar 

  12. Epstein, J. et al. Identification of a Pax paired domain recognition sequence and evidence for DNA-dependent conformational changes. J. Biol. Chem. 269, 8355–8361 ( 1994).

    CAS  PubMed  Google Scholar 

  13. Ikeda, M. et al. Different DNA elements can modulate the conformation of thyroid hormone receptor heterodimer and its transcriptional activity. J. Biol. Chem. 271, 23096–23104 (1996).

    Article  CAS  Google Scholar 

  14. . Tan, S. & Richmond, T. J. DNA binding-induced conformational change of the yeast transcriptional activator PRTF. Cell 62, 367–377 (1990).

    Article  CAS  Google Scholar 

  15. Cleary, M. A., Pendergrast, S. & Herr, W. Structural flexibility in transcription complex formation revealed by protein-DNA photocrosslinking. Proc. Natl Acad. Sci. USA 94, 8450–8455 ( 1997).

    Article  ADS  CAS  Google Scholar 

  16. Donaldson, L. W., Petersen, J. M., Graves, B. J. & McInrosh, L. P. Solution structure of the ETS domain from murine Ets-1: a winged helix-turn-helix DNA binding motif. EMBO J. 15, 125– 134 (1996).

    Article  CAS  Google Scholar 

  17. . Werner, M. H. et al. The solution structure of the human ETS1-DNA complex reveals a noval mode of binding and true side chain intercalation. Cell 38, 761–771 ( 1995).

    Article  Google Scholar 

  18. Jonsen, M. D., Petersen, J. M., Xu, Q. P. & Graves, B. J. Characterization of the cooperative function of inhibitory sequences in Ets-1. Mol. Cell. Biol. 16, 2065– 2073 (1996).

    Article  CAS  Google Scholar 

  19. Skalicky, J. J., Donaldson, L. W., Petersen, J. M., Graves, B. J. & McIntosh, L. P. Structural coupling of the inhibitory regions flanking the ETS domain of murine Ets-1. Protein Sci. 5, 296–309 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. . Miner, J. N. & Yamamoto, K. R. Regulatory crosstalk at composite response elements. Trends Biochem. Sci. 16, 426–426 (1991).

    Article  Google Scholar 

  21. Wagner, S. & Green, M. R. DNA-binding domains: targets for viral and cellular regulatory. Curr. Opin. Cell Biol. 6, 410–441 (1994).

    Article  CAS  Google Scholar 

  22. Martin, M. L., Lieberman, P. M. & Curran, T. Fos-Jun dimerization promotes interaction of the basic region with TFIIE-34 and TFIIF. Mol. Cell. Biol. 16 , 2110–2118 (1996).

    Article  CAS  Google Scholar 

  23. . Eckner, R., Yao, T., Oldread, E. & Livingston, D. M. Interaction and functional collaboration of p300/CBP and bHLH proteins in muscle and B-cell differentiation. Genes Dev. 10, 2478– 2490 (1996).

    Article  CAS  Google Scholar 

  24. Sartorelli, V. et al. Molecular mechanisms of myogenic coactivation by p300: direct interaction with the activation domain of MyoD and with the MADS box of MEF2C. Mol. Cell. Biol. 17, 1010– 1026 (1997).

    Article  CAS  Google Scholar 

  25. Huang, C. C. & Herr, W. Differential control of transcription by homologous homeodomain coregulators. Mol. Cell. Biol. 16, 2967–2976 (1996).

    Article  CAS  Google Scholar 

  26. . Misra, V. et al. Conformational alteration of Oct-1 upon DNA binding dictates selectivity in differential interactions with related transcriptional coactivators. Mol. Cell. Biol. 16, 4404– 4413 (1996).

    Article  CAS  Google Scholar 

  27. Walker, S., Hayes, S. & O'Hare, P. Site-specific conformational alteration of the Oct-1 POU domain-DNA complex as the basis for differential recognition by Vmw65 (VP16). Cell 79, 841–852 (1994).

    Article  CAS  Google Scholar 

  28. Johansen, F. E. & Prywes, R. Two pathways for serum regulation of the c-fos serum response element require specific sequence elements and a minimal domain of serum response factor. Mol. Cell. Biol. 14, 5920–5928 ( 1994).

    Article  CAS  Google Scholar 

  29. . Hill, C. S., Wynne, J. & Treisman, R. Serum-regulated transcription by serum response factor (SRF): a novel role for the DNA binding domain. EMBO J. 13, 5421–5432 (1994).

    Article  CAS  Google Scholar 

  30. Chen, J. D. & Evans, R. M. Atranscriptional co-repressor that interacts with nuclear hormone receptors. Nature 377 , 454–457 (1995).

    Article  ADS  CAS  Google Scholar 

  31. Mangelsdorf, D. J. et al. Adirect repeat in the cellular retinol-binding protein type II gene confers differential regulation by RXR and RAR. Cell 66, 555–561 (1991).

    Article  CAS  Google Scholar 

  32. . Kurokawa, R. et al. Polarity-specific activities of retinoic acid receptors determined by a co-repressor. Nature 377, 451– 454 (1995).

    Article  ADS  CAS  Google Scholar 

  33. Kurokawa, R. et al. Regulation of retinoid signalling by receptor polarity and allosteric control of ligand binding. Nature 371, 528–531 (1994).

    Article  ADS  CAS  Google Scholar 

  34. Saatcioglu, F., Deng, T. & Karin, M. Anovel cis element mediating ligand-independent activation by c-ErbA: implications for hormonal regulation. Cell 75, 1095– 1105 (1993).

    Article  CAS  Google Scholar 

  35. . Rahman, A., Esmaili, A. & Saatcioglu, F. Aunique thyroid hormone response element in the human immunodeficiency virus type 1 long terminal repeat that overlaps the Sp1 binding sites. J. Biol. Chem. 207, 31059– 31064 (1995).

    Article  Google Scholar 

  36. Tomie-Canie, M., Day, D., Samuela, H. H., Freedberg, I. M. & Blumenberg, M. Novel regulation of keratin gene expression by thyroid hormone and retinoid receptors. J. Biol. Chem. 271, 1416–1423 (1996).

    Article  Google Scholar 

  37. Härd, T. et al. Solution structure of the glucocorticoid receptor DNA-binding domain. Science 249, 157– 160 (1990).

    Article  ADS  Google Scholar 

  38. . Luisi, B. F. et al. Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. Nature 352, 497– 505 (1991).

    Article  ADS  CAS  Google Scholar 

  39. Baumann, H. et al. Refined solution structure of the glucocorticoid receptor DNA-binding domain. Biochemistry 32, 13463 –13471 (1993).

    Article  CAS  Google Scholar 

  40. van Tilborg, M. A. et al. Structure refinement of the glucocorticoid receptor-DNA binding domain from NMR data by relaxation matrix calculations. J. Mol. Biol. 247, 689–700 ( 1995).

    CAS  PubMed  Google Scholar 

  41. . Schwabe, J. W. R. et al. The crystal structure of the estrogen receptor DNA-binding domain bound to DNA: how receptors discriminate between their response elements. Cell 75, 567–578 (1993).

    Article  CAS  Google Scholar 

  42. Schwabe, J. W. et al. The oestrogen receptor recognizes an imperfectly palindromic response element through an alternative side-chain conformation. Structure 3, 201–213 ( 1995).

    Article  CAS  Google Scholar 

  43. Dahlman-Wright, K. et al. Interaction of the glucocorticoid receptor DNA-binding domain with DNA as a dimer is mediated by a short segment of five amino acids. J. Biol. Chem. 266, 3107–3112 (1991).

    CAS  PubMed  Google Scholar 

  44. . Drouin, J. et al. Homodimer formation is rate-limiting for high affinity DNA binding by glucocorticoid receptor. Mol. Endocrinol. 6, 1299–1309 (1992).

    CAS  PubMed  Google Scholar 

  45. Yamamoto, K. R., Pearce, D., Thomas, J. & Miner, J. N. in Transcriptional Regulation (eds McKnight, S.L. & Yamamoto, K. R.) 1169– 1170 (Cold Spring Harbor Laboratory Press, NY, 1992 ).

    Google Scholar 

  46. Heck, S. et al. Adistinct modulating domain in glucocorticoid receptor monomers in the repression of activity of the transcription factor AP-1. EMBO J. 13, 4087–4095 ( 1994).

    Article  CAS  Google Scholar 

  47. . Lefstin, J. A., Thomas, J. R. & Yamamoto, K. R. Influence of a steroid receptor DNA-binding domain on transcriptional regulatory functions. Genes Dev. 8, 2842–2856 (1994).

    Article  CAS  Google Scholar 

  48. Cato, A. C. & Wade, E. Molecular mechanisms of anti-inflammatory action of glucocorticoids. Bioassays 18, 371–378 (1996).

    Article  CAS  Google Scholar 

  49. Drouin, J. et al. Novel glucocorticoid receptor complex with DNA element of the hormone-repressed POMC gene. EMBO J. 12, 145–156 (1993).

    Article  CAS  Google Scholar 

  50. . König, H., Ponta, H., Rahmsdorf, H. J. & Herrlich, P. Interference between pathway-specific transcription factors: glucocorticoids antagonize phorbol ester-induced AP-1 activity without altering AP-1 site occupation in vivo. EMBO J. 11, 2241 –2246 (1992).

    Article  Google Scholar 

  51. Diamond, M. I. et al. Transcription factor interactions: selectors of positive or negative regulation from a single DNA element. Science 249, 1266–1271 (1990).

    Article  ADS  CAS  Google Scholar 

  52. Jonat, C. et al. Antitumor promotion and antiinflammation: down-modulation of AP-1 (fos/jun) activity by glucocorticoid hormone. Cell 62, 1189–1204 (1990).

    Article  CAS  Google Scholar 

  53. . Yang-yen, H.-F. et al. Transcriptional interference between c-Jun and the glucocorticoid receptor: mutual inhibition of DNA binding due to direct protein-protein interaction. Cell 62, 1205–1215 (1990).

    Article  CAS  Google Scholar 

  54. Starr, D. B. et al. Intracellular receptors use a common mechanism to interpret signaling information at response elements. Genes Dev. 10, 1271–1283 (1996).

    Article  CAS  Google Scholar 

  55. Saudek, V. et al. Solution structure of the basic region from the transcriptional activator GCN4. Biochemistry 30, 1310– 1317 (1991).

    Article  CAS  Google Scholar 

  56. Ellenberger, T. E. et al. The GCN4 basic Áleucine zipper binds DNA as a dimer of uninterrupted alpha helices: crystal structure of the protein-DNA complex. Cell 71, 1223–1237 (1992).

    Article  CAS  Google Scholar 

  57. O'Neil, K. T., Shuman, J. D., Ampe, C. & DeGrado, W. F. DNA-induced increase in the alpha-helical content of C/EBP and GCN4. Biochemistry 30, 9030–9034 ( 1991).

    Article  CAS  Google Scholar 

  58. Krebs, D. et al. The basic subdomain of the c-Jun oncoprotein. A joint CD, Fourier-transform infrared and NMR study. Eur. J. Biochem. 231, 370–380 (1995).

    Article  CAS  Google Scholar 

  59. . Ebneth, A. et al. Biophysical characterization of the c-Myb DNA-binding domain. Biochemistry 33, 14586– 14593 (1994).

    Article  CAS  Google Scholar 

  60. Ogata, K. et al. The cavity in the hydrophobic core of Myb DNA-binding domain is reserved for DNA recognition and trans-activation. Nature Struct. Biol. 3, 178–187 ( 1996).

    Article  CAS  Google Scholar 

  61. Jamin, N. et al. Secondary structure of the DNA-binding domain of the c-Myb oncoprotein in solution. A multidimensional double and triple heteronuclear NMR study. Eur. J. Biochem. 216, 147– 154 (1993).

    Article  CAS  Google Scholar 

  62. . Carr, M. D. et al. Structure of the B-Myb DNA-binding domain in solution and evidence for multiple conformations in the region of repeat-2 involved in DNA binding: implications for sequence-specific DNA binding by Myb proteins. Eur. J. Biochem. 235, 721– 735 (1996).

    Article  CAS  Google Scholar 

  63. Fujita, T., Nolan, G. P., Ghosh, S. & Baltimore, D. Independent modes of transcriptional activation by the p50 and p65 subunits of NF-kappa B. Genes Dev. 6, 775–787 (1992).

    Article  CAS  Google Scholar 

  64. Hay, R. T. & Nicholson, J. DNA binding alters the protease susceptibility of the p50 subunit of NF-KappaB. Nucleic Acids Res. 21, 4592–4598 ( 1993).

    Article  CAS  Google Scholar 

  65. . Matthews, J. R. et al. Conformational changes induced by DNA binding of NF-kappa B. Nucleic Acids Res. 23, 3393– 3402 (1995).

    Article  CAS  Google Scholar 

  66. Toney, J. H. et al. Conformational changes in chicken thyroid hormone receptor alpha 1 induced by binding to ligand or to DNA. Biochemistry 32, 2–6 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank W. Herr, C. Jamieson, A. Johnson, E. Levine, D. B. Starr and J. Weissman for comments on the manuscript. The authors are supported by grants from the NIH and the NSF.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lefstin, J., Yamamoto, K. Allosteric effects of DNA on transcriptional regulators. Nature 392, 885–888 (1998). https://doi.org/10.1038/31860

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/31860

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing