Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Primary sequence of a dimeric bacterial haemoglobin from Vitreoscilla

Abstract

Vitreoscilla, a filamentous bacterium in the Beggiatoa family, synthesizes a soluble haemprotein which has two identical subunits of relative molecular mass 15,775 and two b haems per molecule1. It is synthesized in relatively large quantities when the organism, a strict aerobe, is grown under hypoxic conditions2. It forms a relatively stable oxygenated form which is spectrally similar to oxymyoglobin (oxyHb) and oxyhaemoglobin (oxyHb)3. The amino acid sequence of this protein has been determined and aligned to fit the helical regions of several animal and plant globins. This alignment is consistent with its being a structural homologue of the eucaryotic haemoglobins although it diverged from the others in the N-terminal region and may lack an A-helix. It showed the maximum sequence homology (24%) with lupin leghaemoblobin (Lb).Vitreoscilla Hb is the first bacterial haemoglobin to be sequenced. It may function to enable the organism to survive in oxygen-limited environments by acting as an oxygen storage-trap or to facilitate oxygen diffusion.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Tyree, B. & Webster, D. A. J. biol Chem. 253, 6988–6991 (1978).

    CAS  PubMed  Google Scholar 

  2. Boerman, S. & Webster, D. A. J. Gen. appl. Microbiol. 28, 35–43 (1982).

    Article  CAS  Google Scholar 

  3. Webster, D. A. & Liu, C. Y. J. biol. Chem. 249, 4257–4260 (1974).

    CAS  PubMed  Google Scholar 

  4. Webster, D. A. & Orii, Y. J. biol. Chem. 252, 1834–1836 (1977).

    CAS  PubMed  Google Scholar 

  5. DeMaio, R. A., Webster, D. A. & Chance, B. J. biol. Chem. 258, 13768–13771 (1983).

    CAS  PubMed  Google Scholar 

  6. Webster, D. & Georgiou, C. Fedn Proc. 44, 1780 (1985).

    Google Scholar 

  7. Orii, Y. & Webster, D. A. J. biol. Chem. 261, 3544–3547 (1986).

    CAS  PubMed  Google Scholar 

  8. Orii, Y. J. biol. Chem. 259, 7187–7190 (1984).

    CAS  PubMed  Google Scholar 

  9. McCray, J. A. Biochem. biophys. Res. Commun. 47, 187–193 (1972).

    Article  CAS  Google Scholar 

  10. Choc, M. G., Webster, D. A. & Caughey, W. S. J. biol. Chem. 257, 865–869 (1982).

    CAS  PubMed  Google Scholar 

  11. Wakabayashi, S., Matsubara, H., Kim, C. H. & King, T. E. J. biol. Chem. 257, 9335–9344 (1982).

    CAS  PubMed  Google Scholar 

  12. Minami, Y., Wakabayashi, S., Imoto, S., Ohta, Y. & Matsubara, H. J. Biochemistry (Tokyo) 98, 649–655 (1985).

    Article  CAS  Google Scholar 

  13. Appleby, C. A. Biochim. biophys. Acta 172, 88–105 (1969).

    Article  CAS  Google Scholar 

  14. Lesk, A. M. & Chothia, C. J. molec. Biol. 136, 225–270 (1980).

    Article  CAS  Google Scholar 

  15. Perutz, M. F., Kendrew, J. C. & Watson, H. C. J. molec. Biol. 13, 669–678 (1965).

    Article  CAS  Google Scholar 

  16. Runnegar, B. J. Molec. Evol. 21, 33–41 (1984).

    Article  ADS  CAS  Google Scholar 

  17. Lamba, P. & Webster, D. A. J. Bact. 142, 169–173 (1980).

    CAS  PubMed  Google Scholar 

  18. Pringsheim, E. G. J. gen. Microbiol. 5, 124–149 (1951).

    Article  CAS  Google Scholar 

  19. Mayfield, D. C. & Kester, A. S. J. Bact. 112, 1052–1056 (1972).

    CAS  PubMed  Google Scholar 

  20. Guidotti, G. An. Rev. Biochem. 41, 731–752 (1972).

    Article  CAS  Google Scholar 

  21. Stryer, L. in Biochemistry, 847 (Freeman, San Francisco, 1975).

    Google Scholar 

  22. Wittenberg, J. A., Bergensen, F. J., Appleby, C.A. & Turner, G.L. J. biol. Chem. 249, 4057–4066 (1974).

    CAS  PubMed  Google Scholar 

  23. Pritsyn, O. B. J. molec. Biol. 88, 287–300 (1974).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wakabayashi, S., Matsubara, H. & Webster, D. Primary sequence of a dimeric bacterial haemoglobin from Vitreoscilla. Nature 322, 481–483 (1986). https://doi.org/10.1038/322481a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/322481a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing