Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A novel VH to VHDJH joining mechanism in heavy-chain-negative (null) pre-B cells results in heavy-chain production

Abstract

During B-cell development, theVH genes of immunoglobulin heavy (H) chains are assembled from three different germline components: the variable (VH) segment, the diversity (D) segment and the joining (JH) segment1,2. The joining between two segments involves the recognition of conserved nonamer–heptamer sequences bordering each segment, double-stranded cuts at the heptamer–segment border, and the re-ligation of the two segment ends which have frequently been modified by the deletion and addition of nucleotides3–6. The flexibility of the joint increases VHDJHvariability. However, it also results in many pre-B cells which do not produce immunoglobulin H chains and have non-functional VHDJH complexes carrying the VH and JH coding sequences in different reading frames7. We show here that such ‘null cells’ are not dead-end products of the B-cell developmental pathway but can perform a novel VH to VHDJH joining using a 5′ VH segment to replace the VH sequence of the VHDJH complex. This process can result in the generation of a VHDJ+H complex and the subsequent expression of an immunoglobulin heavy chain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Tonegawa, S. Nature 302, 575–581 (1983).

    Article  ADS  CAS  Google Scholar 

  2. Yancopoulos, G. D. & Alt, F. W. A. Rev. Immun. 4, 339–368 (1986).

    Article  CAS  Google Scholar 

  3. Alt, F. W. et al. EMBO J. 3, 1209–1219 (1984).

    Article  CAS  Google Scholar 

  4. Sakano, H., Maki, R., Kurosawa, Y., Roeder, W. & Tonegawa, S. Nature 286, 676–683 (1980).

    Article  ADS  CAS  Google Scholar 

  5. Alt, F. W. & Baltimore, D. Proc. natn. Acad. Sci. U.S.A. 79, 4118–4122 (1982).

    Article  ADS  CAS  Google Scholar 

  6. Steinmetz, M., Altenburger, W. & Zachau, H. G. Nucleic Acids Res. 8, 709–1720 (1980).

    Google Scholar 

  7. Hagiya, M. et al. Proc. natn. Acad. Sci. U.S.A. 83, 145–149 (1986).

    Article  ADS  CAS  Google Scholar 

  8. Reth, M. G. & Alt, F. W. Nature 312, 418–423 (1984).

    Article  ADS  CAS  Google Scholar 

  9. Reth, M. G., Jackson, S. & Alt, F. W. EMBO J. (in the press).

  10. Reth, M. G., Ammirati, P., Jackson, S. & Alt, F. Nature 317, 353–355 (1985).

    Article  ADS  CAS  Google Scholar 

  11. Alt, F. W., Blackwell, T. K., DePinho, R. A., Reth, M. G. & Yancopoulos, G. D. Immun. Rev. 89, 5–20 (1986).

    Article  CAS  Google Scholar 

  12. Rosenberg, N. & Baltimore, D. J. exp. Med. 143, 1453–1463 (1976).

    Article  CAS  Google Scholar 

  13. Brodeur, P. & Riblet, R. Eur. J. Immun. 14, 922–930 (1984).

    Article  CAS  Google Scholar 

  14. Brodeur, P. & Riblet, R. UCLA Symp. molec. cell. Biol. new Ser. 18, 445 (1984).

    CAS  Google Scholar 

  15. Dildrop, R. Immun. Today 5, 85–86 (1984).

    Article  CAS  Google Scholar 

  16. Krawinkel, U., Zoebelein, G., Brüggemann, M., Radbruch, A. & Rajewsky, K. Proc. natn. Acad. Sci U.S.A. 80, 4997–5001 (1983).

    Article  ADS  CAS  Google Scholar 

  17. Early, P., Nottenburg, C., Weissman, I. & Hood, L. Molec. cell. Biol. 2, 829–831 (1982).

    Article  CAS  Google Scholar 

  18. Hochtl, J. & Zachau, H. G. Nature 302, 260–263 (1983).

    Article  ADS  CAS  Google Scholar 

  19. Moore, M. W., Durdik, J., Persiani, D. M. & Selsing, E. Proc. natn. Acad. Sci. U.S.A. 82, 6211–6215 (1985).

    Article  ADS  CAS  Google Scholar 

  20. Siminovitch, K. A., Bakhski, A., Goldman, P. & Korsmeyer, S. J. Nature 316, 260–263 (1985).

    Article  ADS  CAS  Google Scholar 

  21. Kemp, D. J., Harris, A. W., Cory, S. & Adams, J. M. Proc. natn. Acad. Sci. U.S.A. 77, 2876–2880 (1980).

    Article  ADS  CAS  Google Scholar 

  22. Van Ness, B. G. et al. Cell 27, 593–602 (1981).

    Article  CAS  Google Scholar 

  23. Picard, D. & Schaffner, W. EMBO J. 3, 3031–3039 (1984).

    Article  CAS  Google Scholar 

  24. Yancopoulos, G. D. & Alt, F. W. Cell 40, 271–281 (1985).

    Article  CAS  Google Scholar 

  25. Blackwell, T. K., Yancopoulos, G. D. & Alt, F. W. UCLA Symp. molec. cell. Biol., new Ser. 19, 537 (1984).

    CAS  Google Scholar 

  26. Siu, G. et al. Nature 311, 344–350 (1984).

    Article  ADS  CAS  Google Scholar 

  27. Wang, X. F. & Calame, K. Cell 43, 659–665 (1985).

    Article  CAS  Google Scholar 

  28. Gillies, S. D., Morrison, S. L., Oi, V. T. & Tonegawa, S. Cell 33, 717–728 (1983).

    Article  CAS  Google Scholar 

  29. Banerji, J., Olson, L. & Schaffner, W. Cell 33, 729–740 (1983).

    Article  CAS  Google Scholar 

  30. Neuberger, M. S. EMBO J. 2, 1373–1378 (1983).

    Article  CAS  Google Scholar 

  31. Yancopoulos, G. D., Blackwell, T. K., Suh, H., Hood, L. & Alt, F. W. Cell 44, 251–259 (1986).

    Article  CAS  Google Scholar 

  32. Kabat, E. A., Wu, T. T., Bilofsky, H., Reid-Miller, M. & Perry, H. (eds) Sequences of Proteins of Biological Interest No. 80–2008 (NIH, Bethesda, 1983).

  33. Barth, R. K. et al. Nature 316, 518–523 (1985).

    Article  ADS  Google Scholar 

  34. Arden, B., Klotz, J., Siu, G. & Hood, L. Nature 316, 518–523 (1985).

    Article  Google Scholar 

  35. Becker, D. et al. Nature 317, 430–434 (1985).

    Article  ADS  CAS  Google Scholar 

  36. Kranz, D. M. et al. Nature 313, 752–755 (1985).

    Article  ADS  CAS  Google Scholar 

  37. Hayday, A. C. et al. Cell 40, 259–269 (1985).

    Article  CAS  Google Scholar 

  38. Lefranc, M. P., Forster, A. & Rabbitts, T. H. Nature 319, 420–422 (1986).

    Article  ADS  CAS  Google Scholar 

  39. Lewis, S., Rosenberg, N., Alt, F. & Baltimore, D. Cell 30, 807–816 (1982).

    Article  CAS  Google Scholar 

  40. Feddersen, R. M. & Van Ness, B. G. Proc. natn. Acad. Sci. U.S.A. 82, 4793–4797 (1985).

    Article  ADS  CAS  Google Scholar 

  41. Yancopoulos, G. D. et al. Nature 311, 727–733 (1984).

    Article  ADS  CAS  Google Scholar 

  42. De Wet et al. J. Virol. 33, 401–410 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Maxam, A. & Gilbert, W. Meth. Enzym. 65, 419–460 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reth, M., Gehrmann, P., Petrac, E. et al. A novel VH to VHDJH joining mechanism in heavy-chain-negative (null) pre-B cells results in heavy-chain production. Nature 322, 840–842 (1986). https://doi.org/10.1038/322840a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/322840a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing