Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The molecular clock runs more slowly in man than in apes and monkeys

Abstract

The molecular clock hypothesis1 postulates that the rate of molecular evolution is approximately constant over time. Although this hypothesis has been highly controversial in the past, it is now widely accepted2–5. The assumption of rate constancy has often been taken as a basis for reconstructing the phylogenetic relationships among organisms or genes and for dating evolutionary events2–5. Further, it has been taken as strong support for the neutral mutation hypothesis5, which postulates that the majority of molecular changes in evolution are due to neutral or nearly neutral mutations6. For these reasons, the validity of the rate constancy assumption is a vital issue in molecular evolution. Recent studies7–12 using DNA sequence data have raised serious doubts about the hypothesis. These studies provided support for the suggestion made from immunological distance and protein sequence data13,14 that a rate slowdown has occurred in hominoid evolution, and showed, in agreement with DNA hybridization studies15,16, that rates of nucleotide substitution are significantly higher in rodents than in man. Here, rates of nucleotide substitution in rodents are estimated to be 4–10 times higher than those in higher primates and 2–4 times higher than those in artiodactyls. Further, this study provides strong evidence for the hominoid slowdown hypothesis13,14 and suggests a further rate-slowdown in hominoid evolution. Our results suggest that the variation in rate among mammals is primarily due to differences in generation time8,16 rather than changes in DNA repair mechanisms9. We also propose a method for estimating the divergence times between species when the rate constancy assumption is violated.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Zuckerkandl, E. & Pauling, L. in Evolving Genes and Proteins (eds Bryson, V. & Vogel, H. J.) 97–166 (Academic, New York, 1965).

    Google Scholar 

  2. Dayhoff, M.O. Atlas of Protein Sequence and Structure Vol. 5 (National Biomedical Research Foundation, Silver Spring, Maryland, 1972).

    Google Scholar 

  3. Nei, M. Molecular Population Genetics and Evolution (North-Holland, Amsterdam, 1975).

    Google Scholar 

  4. Wilson, A. C., Carlson, S. S. & White, T. J. A. Rev. Biochem. 46, 573–639 (1977).

    CAS  Google Scholar 

  5. Kimura, M. The Neutral Theory of Molecular Evolution (Cambridge University Press, Cambridge, 1983).

    Google Scholar 

  6. Kimura, M. Nature 217, 624–626 (1968).

    ADS  CAS  PubMed  Google Scholar 

  7. Scott, A. F. et al. Molec. Biol. Evol. 1, 371–389 (1984).

    CAS  PubMed  Google Scholar 

  8. Wu, C.-I. & Li, W.-H. Proc. natn. Acad. Sci. U.S.A. 82, 1741–1745 (1985).

    ADS  CAS  Google Scholar 

  9. Britten, R. J. Science 231, 1393–1398 (1986).

    ADS  CAS  PubMed  Google Scholar 

  10. Giebel, L. B., van Santen, J. L., Slightom, J. L. & Sprits, R. A. Proc. natn. Acad. Sci. U.S.A. 82, 6985–6989 (1985).

    ADS  CAS  Google Scholar 

  11. Koop, B. F., Goodman, M., Xu, P. & Slightom, J. L. Nature 319, 234–238 (1986).

    ADS  CAS  PubMed  Google Scholar 

  12. Gillespie, J. H. Molec. Biol. Evol. 3, 138–155 (1986).

    CAS  PubMed  Google Scholar 

  13. Goodman, M. Hum. Biol. 33, 131–162 (1961).

    CAS  PubMed  Google Scholar 

  14. Goodman, M., Barnabas, J., Matsuda, G. & Moore, G. W. Nature 233, 604–613 (1971).

    ADS  CAS  PubMed  Google Scholar 

  15. Laird, C. D., McConaughy, B. L. & McCarthy, B. J. Nature 224, 149–154 (1969).

    ADS  CAS  PubMed  Google Scholar 

  16. Kohne, D. E., Chiscon, J. A. & Hoyer, B. H. J. hum. Evol. 1, 627–644 (1972).

    Google Scholar 

  17. Li, W.-H., Wu, C.-I. & Luo, C.-C. Molec. Biol. Evol. 2, 150–174 (1985).

    PubMed  Google Scholar 

  18. Liebhaber, S. A., Goossens, M. & Kan, Y. W. Nature 290, 26–29 (1981).

    ADS  CAS  PubMed  Google Scholar 

  19. Liebhaber, S. A. & Begley, K. A. Nucleic Acids Res. 11, 8915–8929 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Slightom, J. L., Blechl, A. E. & Smithies, O. Cell 21, 627–638 (1980).

    CAS  PubMed  Google Scholar 

  21. Slightom, J. L. et al. Molec. Biol. Evol. 2, 370–389 (1985).

    CAS  PubMed  Google Scholar 

  22. Schimenti, J. C. & Duncan, C. H. Molec. Biol. Evol. 2, 505–513 (1985).

    CAS  PubMed  Google Scholar 

  23. GenBank, Release 44.0 (Bolt, Beranek & Newman, Cambridge, Massachusetts, 1986).

  24. Sibley, C. G. & Ahlquist, J. E. J. molec. Evol. 20, 2–15 (1984).

    ADS  CAS  PubMed  Google Scholar 

  25. Pilbeam, D. Scient. Am. 252, 84–96 (1984).

    Google Scholar 

  26. Gingerich, P. D. Yearb. phys. Anthrop. 27, 57–72 (1984).

    Google Scholar 

  27. Rosenberger, A. L. J. hum. Evol. 13, 737–742 (1984).

    Google Scholar 

  28. Brunner, A. M., Schimenti, J. C. & Duncan, C. H. Biochemistry (in the press).

  29. Li, W.-H. & Gojobori, T. Molec. Biol. Evol. 1, 94–108 (1983).

    CAS  PubMed  Google Scholar 

  30. Langley, C. H. & Fitch, W. M. J. molec. Evol. 3, 161–177 (1974).

    ADS  CAS  PubMed  Google Scholar 

  31. Gentry, A. W. in Evolution of African Mammals (eds Maglio, V. J. & Cooke, H. B. S.) 540–572 (Harvard University Press, Cambridge, Massachusetts, 1978).

    Google Scholar 

  32. Sarich, V. M. & Wilson, A. C. Science 158, 1200–1203 (1967).

    ADS  CAS  PubMed  Google Scholar 

  33. Li, W.-H. Proc. natn. Acad. Sci. U.S.A. 78, 1085–1089 (1981).

    ADS  CAS  Google Scholar 

  34. Pilbeam, D. Am. Anthrop. 88, 295–312 (1986).

    Google Scholar 

  35. Andrews, P. Nature 314, 498–499 (1985).

    ADS  CAS  PubMed  Google Scholar 

  36. Vogel, F., Kopun, M. & Rathenberg, R. in Molecular Anthropology (eds Goodman, M. & Tashian, R. E.) 13–33 (Plenum, New York, 1976).

    Google Scholar 

  37. Kimura, M. Proc. natn. Acad. Sci U.S.A. 63, 1181–1188 (1969).

    ADS  CAS  Google Scholar 

  38. Jacobs, L. L. & Pilbeam, D. J. hum. Evol. 9, 551–555 (1980).

    Google Scholar 

  39. Martin, S. L., Vincent, K. A. & Wilson, A. C. J. molec. Biol. 164, 513–528 (1983).

    CAS  PubMed  Google Scholar 

  40. McDonald, J. D., Lin, F.-K. & Goldwasser, E. Molec. cell. Biol. 6, 842–848 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Seki, T. et al. Science 227, 649–651 (1985).

    ADS  CAS  PubMed  Google Scholar 

  42. Minghetti, P. P., Law, S. W. & Dugaiczyk, A. Molec. Biol. Evol. 2, 347–358 (1985).

    CAS  PubMed  Google Scholar 

  43. Fukasawa, K. M. et al. Molec. Biol. Evol. 3, 330–342 (1986).

    CAS  PubMed  Google Scholar 

  44. Mukai, T., Joh, K., Arai, Y., Yatsuki, H. & Hori, K. J. biol. Chem. 261, 3347–3354 (1986).

    CAS  PubMed  Google Scholar 

  45. Paolella, G., Buono, P., Mancini, F. P., Izzo, P. & Salvatore; F. Eur. J. Biochem. 156, 229–235 (1986).

    CAS  PubMed  Google Scholar 

  46. Buskin, J. N. et al. J. molec. Evol. 22, 334–341 (1985).

    ADS  CAS  PubMed  Google Scholar 

  47. Benfield, P. A. et al. J. biol. Chem. 259, 14979–14984 (1984).

    CAS  PubMed  Google Scholar 

  48. Hayashizaki, Y. et al. FEBS Lett. 188, 394–400 (1985).

    CAS  PubMed  Google Scholar 

  49. Jukes, T. H. & Cantor, C. R. in Evolution of Protein Molecules (ed. Munro, H. N.) 21–123 (Academic, New York, 1969).

    Google Scholar 

  50. Kimura, M. & Ohta, T. J. molec. Evol. 2, 87–90 (1972).

    ADS  CAS  PubMed  Google Scholar 

  51. Miyata, T. et al. J. molec. Evol. 19, 28–35 (1982).

    ADS  CAS  PubMed  Google Scholar 

  52. Hardison, R. C. J. biol. Chem. 256, 11780–11786 (1981).

    CAS  PubMed  Google Scholar 

  53. Hill, R. E. et al. Nature 311, 175–177 (1984).

    ADS  CAS  PubMed  Google Scholar 

  54. Marks, J., Shaw, J.-P. & Shen, C.-K. J. Proc. natn. Acad. Sci. U.S.A. 83, 1413–1417 (1986).

    ADS  CAS  Google Scholar 

  55. Cheng, J.-F., Raid, L. & Hardinson, R. C. J. biol. Chem. 261, 839–848 (1986).

    CAS  PubMed  Google Scholar 

  56. Brown, W. M. et al. J. molec. Evol. 18, 225–239 (1982).

    ADS  CAS  PubMed  Google Scholar 

  57. Hixon, J. E. & Brown, W. M. Mol. Biol. Evol. 3, 1–18 (1986).

    Google Scholar 

  58. Reeves, R. et al. Proc. natn. Acad. Sci. U.S.A. 83, 3228–3232 (1986).

    ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, WH., Tanimura, M. The molecular clock runs more slowly in man than in apes and monkeys. Nature 326, 93–96 (1987). https://doi.org/10.1038/326093a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/326093a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing