Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

HPRT-deficient (Lesch–Nyhan) mouse embryos derived from germline colonization by cultured cells

Abstract

Embryonal stem (ES) cell lines, established in culture from peri-implantation mouse blastocysts1–3, can colonize both the somatic and germ-cell lineages of chimaeric mice following injection into host blastocysts4,5. Recently, ES cells with multiple integrations of retro viral sequences have been used to introduce these sequences into the germ-line of chimaeric mice5, demonstrating an alternative to the microinjection of fertilized eggs6 for the production of transgenic mice. However, the properties of ES cells raise a unique possibility: that of using the techniques of somatic cell genetics to select cells with genetic modifications such as recessive mutations, and of introducing these mutations into the mouse germ line. Here we report the realization of this possibility by the selection in vitro of variant ES cells deficient in hypoxanthine guanine phosphoribosyl transferase (HPRT; EC 2.4.2.8), their use to produce germline chimaeras resulting in female offspring heterozygous for HPRT-deficiency, and the generation of HPRT-deficient preimplantation embryos from these females. In human males, HPRT deficiency causes Lesch–Nyhan syndrome7, which is characterized by mental retardation and self-mutilation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Evans, M. J. & Kaufman, M. H. Nature 292, 154–156 (1981).

    Article  ADS  CAS  Google Scholar 

  2. Martin, G. R. Proc. natn. Acad. Sci. U.S.A. 78, 7634–7638 (1981).

    Article  ADS  CAS  Google Scholar 

  3. Silver, L. M., Martin, G. R. & Strickland, S. (eds) Teratocarcinoma Stem Cells (Cold Spring Harbor Laboratory, New York, 1983).

  4. Bradley, A., Evans, M., Kaufman, M. H. & Robertson, E. Nature 309, 255–256 (1984).

    Article  ADS  CAS  Google Scholar 

  5. Robertson, E., Bradley, A., Kuehn, M. & Evans, M. Nature 323, 445–448 (1986).

    Article  ADS  CAS  Google Scholar 

  6. Gordon, J. W. & Ruddle, F. H. Gene 33, 121–136 (1985).

    Article  CAS  Google Scholar 

  7. Nyhan, W. L. A. Rev. Med. 24, 41–60 (1973).

    Article  CAS  Google Scholar 

  8. O'Brien, S. J. (ed.) Genetic Maps Vol. 2 (National Institutes of Health, Bethesda, Maryland, 1982).

  9. Caskey, C. T. & Kruh, G. D. Cell 16, 1–9 (1979).

    Article  CAS  Google Scholar 

  10. Dewey, M. J., Martin, D. W., Martin, G. R. & Mint, B. Proc. natn. Acad. Sci. U.S.A. 74, 5564–5568 (1977).

    Article  ADS  CAS  Google Scholar 

  11. Hooper, M. L. in Teratocarcinomas: a Practical Approach (ed. Robertson, E.) (IRL, Oxford, in the press).

  12. Engel, W., Krone, W. & Wolf, U. Mut. Res. 4, 353–368 (1967).

    Article  CAS  Google Scholar 

  13. Smith, A. & Hooper, M. L. Devl Biol. (in the press).

  14. Littlefield, J. W. Science 145, 709–710 (1964).

    Article  ADS  CAS  Google Scholar 

  15. Nesbitt, M. N. & Francke, U. Chromosoma 41, 145–158 (1973).

    Article  CAS  Google Scholar 

  16. Van de Sande, J. H., Lin, C. C. & Deugau, K. V. Expl Cell Res. 120, 439–444 (1979).

    Article  CAS  Google Scholar 

  17. Gillin, F. D., Roufa, D. J., Beaudet, A. L. & Caskey, C. T. Genetics 72, 239–252 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Gartler, S. M., Scott, R. C., Goldstein, J. L. & Campbell, B. Science 172, 572–573 (1971).

    Article  ADS  CAS  Google Scholar 

  19. Ponder, B. A. J. et al. Nature 313, 689–691 (1985).

    Article  ADS  CAS  Google Scholar 

  20. Kuehn, M. R., Bradley, A., Robertson, E. J. & Evans, M. Nature 326, 295–298 (1987).

    Article  ADS  CAS  Google Scholar 

  21. Baumeister, A. A. & Frye, G. D. Neurosci. Behav. Rev. 9, 169–178 (1985).

    Article  CAS  Google Scholar 

  22. Patel, P. I. & Caskey, C. T. Bioessays 2, 4–8 (1985).

    Article  CAS  Google Scholar 

  23. Quinn, P., Barros, C. & Whittingham, D. G. J. Reprod. Fert. 66, 161–168 (1982).

    Article  CAS  Google Scholar 

  24. Whittingham, D. G. J. Reprod. Fert. Suppl. 14, 7–21 (1971).

    CAS  Google Scholar 

  25. Coon, H. G. J. Cell Biol. 39, 29a (1968).

    Google Scholar 

  26. Chen, T. R. Expl Cell Res. 104, 255–262 (1977).

    Article  CAS  Google Scholar 

  27. Monk, M. & Kathuria, H. Nature 270, 599–601 (1977).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hooper, M., Hardy, K., Handyside, A. et al. HPRT-deficient (Lesch–Nyhan) mouse embryos derived from germline colonization by cultured cells . Nature 326, 292–295 (1987). https://doi.org/10.1038/326292a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/326292a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing